
Client-controlled Cryptography-as-a-Service
in the Cloud

Sören Bleikertz1, Sven Bugiel2, Hugo Ideler2,
Stefan Nürnberger2, Ahmad-Reza Sadeghi2

1 IBM Research - Zurich, Rüschlikon, Switzerland
sbl@zurich.ibm.com

2 TU Darmstadt / CASED, Darmstadt, Germany
{sven.bugiel, hugo.ideler, stefan.nuernberger,

ahmad.sadeghi}@trust.cased.de

Abstract. Today, a serious concern about cloud computing is the pro-
tection of clients’ data and computations against various attacks from
outsiders as well as against the cloud provider. Moreover, cloud clients
are rather limited in implementing, deploying and controlling their own
security solutions in the cloud. The provider theoretically has access to
stored keys in dormant images and deploying keys during run-time is
infeasible because authenticating running VM instances is not possible.
In this paper, we present a security architecture that allows for establishing
secure client-controlled Cryptography-as-a-Service (CaaS) in the cloud:
Our CaaS enables clients to be in control of the provisioning and usage
of their credentials and cryptographic primitives. They can securely
provision keys or even implement their private virtual security module
(e.g., vHSM or SmartCard). All clients’ cryptographic operations run in
a protected client-specific secure execution domain. This is achieved by
modifying the Xen hypervisor and leveraging standard Trusted Computing
technology. Moreover, our solution is legacy-compatible by installing a
transparent cryptographic layer for the storage and network I/O of a
VM. We reduced the privileged hypercalls necessary for administration
by 79%. We evaluated the effectiveness and efficiency of our design which
resulted in an acceptable performance overhead.

1 Introduction

Cloud computing offers IT resources, including storage, networking, and com-
puting platforms, on an on-demand and pay-as-you-go basis. This promise of
operational and monetary benefits has already encouraged various organizations
to shift from a “classical” on-premise to a cloud-based service deployment of
their workloads [12].

To secure those services, typically cryptographic security mechanisms are
installed. Usually, these mechanisms require long-term secrets, e.g. SSL/TLS-
secured web services need a secret key stored in the virtual machine (VM)
for authentication purposes. Naturally, such long-term secrets are a valuable

target for attackers that compromise the client’s service. In the classical on-
premise datacenters, clients had the ability to incorporate security devices like
Hardware Security Modules (HSMs) or SmartCards in order to protect their
cryptographic credentials and operations. While this threat still holds in a cloud-
based deployment [1,13,14], the difference is that the incorporation of security
hardware is virtually impossible as cloud providers strictly prohibit physical
customizations or access to their facilities. Additionally, outsourced data and
computations are an easy prey for insider attackers at the provider’s side since
the client has willingly delegated control over his resources to the provider [25].
Controlling running instances of virtual machines, e.g. starting, stopping and
maintaining them, is a necessity for every virtualization solution and is done
by instructing the hypervisor from a privileged management domain which by
default has ultimate access to all virtual machines. Insider attackers have access
to this privileged domain and hence put clients’ cryptographic credentials that
are stored and processed in VMs at risk. This leads to trusting the cloud provider
not to eavesdrop on the data. Consequently, it is desirable to build a cloud
architecture that not only provides means to protect secrets even when the VM
is exploited, but to also allow the client to deploy keys securely to the cloud
without insiders being able to spy on it.

Cryptography-as-a-Service. In this paper, we present a security architec-
ture that allows for provisioning secret-less client VMs in clouds and separating
client’s cryptographic primitives and credentials into a client-controlled and pro-
tected cryptographic domain (DomC). In contrast to other work that also advocates
self-managed cloud services [9,39], we specifically built a solution that not only
allows the establishment of a trust anchor and provisioning of user secret keys, but
which also provides the protection of legacy VMs that were not tailored for our
solution. We base our solution on the well-established concepts of a) segregating
and encapsulating cryptographic operations and keys from the vulnerable client
VM into a separate domain (DomC); and b) a trusted hypervisor that efficiently
and effectively protects the separate DomC against a compromised or malicious
management domain by subjecting it to the principle of least privilege. In contrast
to related work, we overcome the aforementioned problem of actually deploying
keys for use in the cloud. This requires novel security extensions to the VM life
cycle management to protect the DomC during storage, transit, and instantiation,
and to tightly couple it to the corresponding client’s workload VM.

Contribution. We present the design and implementation of Cryptography-as-
a-Service (CaaS), a solution to a practical security problem of clouds based on
well-established and widely available technology. Our contributions are as follows:

– We present a dedicated, client-specific domain DomC for the client’s crypto-
graphic primitives and credentials that can be securely deployed with secrets
by the client without the possibility for insiders or external attackers to
gain access to them. Based on our security extensions to the hypervisor
and well-established Trusted Computing technology, DomC can be protected
from malicious insiders and outsiders in a reasonable adversary model. In

particular, we focus on integrating this protection in the entire VM life-cycle
including deployment, instantiation, migration, and suspension.

– Clients can leverage their DomC in two different usage-modes: a) Virtual
Security Module and b) Secure Virtual Device. Case a) emulates a virtual
hardware security device, like an HSM/TPM, attached to the client VM while
case b) interposes a transparent layer between the client VM and peripheral
devices (disk or network) which encrypts all I/O data to/from those devices
and hence protects unaware legacy OSes.

– We present the reference implementation of CaaS based on the Xen hypervisor
and evaluate its performance for full disk encryption of attached storage
and for a software-based HSM and its effectiveness with respect to different
existing attack scenarios.

– Our modifications of the Xen hypervisor de-privilege the formerly privileged
domain and separate former monolithic components into small, single-purpose
and protected domains with a trusted computing base (TCB) that is orders
of magnitudes smaller than the original version.

2 Model and Requirements

In the cloud service model hierarchy, we target the most general level Infrastructure-
as-a-Service (IaaS) as depicted in Figure 1. In IaaS clouds, Clients rent virtual
resources such as network and virtual machines from the provider and configure
them according to their needs. Commonly, these VMs run public services such as
web services offered to End-Users over the Internet.

End-User Client Administrator

Dom0
(Management)

Client DomU
(Workload)

Hardware

INSIDER OUTSIDER

Cloud
Storage

VM
images Xen (Hypervisor)

Fig. 1. Typical IaaS cloud model including our adversary and trust model.

We focus on the popular Xen hypervisor [3] and consequently use the Xen
terminology. The clients’ VM is denoted as DomU, meaning unprivileged domains
that are guests on the hypervisor and have no direct hardware access. While
there can be many DomU executing in parallel on the Xen hypervisor, there
exists only one persistent privileged management domain, denoted Dom0. This

domain is usually not exposed to outsiders. Xen is a bare-metal hypervisor
only concerned with the separation of virtual domains and their scheduling. It
defers device emulation tasks to Dom0, that holds the necessary rights to access
hardware resources. Thus, Dom0 is naturally the place for the cloud infrastructure
management software and their Administrators to operate in.

Besides computation, IaaS clouds normally also provide Cloud Storage. This
storage is not just used for workload data but also to save the VM images, i.e.,
binary representations of VM states, from which DomUs are instantiated. In newer
cloud usage models like cloud app stores [8], clients are also able to publicly
provide their VM image and share it with other clients.

2.1 Trust Model and Assumptions

From a client’s perspective, one of the most debated issues in cloud computing
security is the trust placed in the cloud provider. In order to build a reasonable
and practical trust model we do not assume a fully untrusted provider, but rather
consider the involved actors and possible attacker types on the provider’s side.
We consider the following actors in our attacker model:

Compute Administrator. On a commodity hypervisor, Dom0 and thus
administrators, have read/write access to the memory of a running VM which
is necessary for VM creation or, e.g., VM introspection. Hence, they are able
to eavesdrop on data or even inject arbitrary code in the client’s running VMs
as shown by [25]. Thus, we do not trust the Dom0. We only consider attacks
from administrators with logical access to the physical servers, e.g., by operating
in the privileged management domain Dom0, and not attackers with physical
access. This attacker model stems from practical scenarios, where datacenters are
operated by a small team of trusted administrators with physical access and a
large number of administrators with logical access, often outsourced and provided
by third parties with limited trust.3

Storage Administrator. For administrators of storage resources, we con-
sider an adversary that aims at learning cryptographic keys by inspecting or
by modifying VM images, e.g., by injecting malicious code that will extract
cryptographic keys at run-time. For storage administrators we allow physical
access to hardware.

Network Administrator. We model the network administrators (omitted
in Figure 1) according to the Dolev-Yao [16] attacker, i.e., the attacker has full
control of the network and can eavesdrop and tamper with all network traffic.

Malicious Clients. It has been shown, that clients frequently store (and
forget) security-critical information, such as cryptographic keys, in their public,
shared VM images [8]. A malicious client can easily investigate those images and
extract these information.

End-Users. Public (web-)services are a gateway for malicious intruders that
compromise a VM, for instance, due to a vulnerability in the provided services.
3 Note that purely cryptographic approaches [4,7,19] protect even against physical at-
tacks. However, they are still impractical due to their enormous complexity overhead.

Hypervisor. We exclude run-time attacks on the hypervisor, as this is an
open research problem and out of scope of this paper. Under this assumption,
we consider a trustworthy hypervisor in the sense that the client can deploy
mechanisms to verify the trustworthiness of the code a hypervisor is constituted
of. This is accomplished using standardized trusted computing mechanisms such
as authenticated boot and remote attestation [36] (cf. Section 3).

Denial-of-Service Attack. We exclude Denial-of-Service attacks from our
model. This is motivated by the fact that the privileged domain Dom0, although
not trusted, cannot be completely excluded from all operational and management
tasks, and thus is always able to block correct operation.

2.2 Objectives and Requirements

Our main security objective is the protection of the client’s cryptographic keys
and operations in the cloud, similar to well-known SmartCards. We consider the
following main security requirements to ensure the secure storage and usage of
cryptographic credentials and operations in the client’s VM:

1. Protection of long-term secrets of client VMs at runtime, i.e., an attacker
who compromised the workload VM DomU or a malicious/compromised man-
agement domain Dom0 cannot extract this information from the DomU VM.

2. The same must hold for the DomU’s integrity at rest, i.e., the client’s dormant
DomU VM image must be protected such that an attacker can neither extract
credentials from it nor unnoticeably tamper with it.

3. Secure VM management operations, i.e., suspension and migration of the
client DomU VM must preserve the integrity and confidentiality of DomU’s
state on the source and target platform as well as during transit/storage.

3 Design and Implementation

In this section, we introduce the architecture and design decisions of Cryptography-
as-a-Service (CaaS). The vital part of this paper is the deployment of secret keys
to the secure environment DomC. In the first subsection 3.1, we explain the idea
of our solution, followed by our security extensions to the hypervisor.

Prerequisites. We assume the availability of a hardware trust anchor on the
cloud nodes in the form of a Trusted Platform Module (TPM). The TPM is
used to securely attest the node’s platform state [36]. For brevity, the following
descriptions involve only one cloud client, however, we stress that the presented
solutions can be easily applied to multiple client scenarios as well. Moreover, we
apply the term encryption to abstractly describe a cryptographic mechanism for
both confidentiality and integrity protection, i.e., authenticated encryption.

3.1 General Idea

Figure 2 illustrates the CaaS architecture using Xen. We achieve our goals by (1)
severing the client’s security sensitive operations and data in DomU into a client-
controlled secure environment denoted DomC; (2) we degrade Dom0 to an untrusted
domain but retain it’s purpose as administrative domain. This is achieved by
extracting the domain management code (building, transferring, destroying VMs)
and making this code run bare-metal in a new virtual machine. The resulting
small trusted domain builder (DomT) then has exactly enough code and privileges
to build new domains and makes the fully-blown management Dom0 being a part
of the TCB obsolete. Instead, Dom0 now merely forwards commands to DomT. The
necessary modifications in the Xen hypervisor are described in subsection 3.2.

Trusted Computing Base Untrusted

Hardware TPM

Xen

Dom0 DomT DomU DomC

Access Control

Fig. 2. Basic idea of CaaS : Establishment of a separate security-domain, denoted
as DomC, for critical cryptographic operations.

To implement DomC and DomT as separate domains running on Xen without the
need for a full-fledged operating system, we leveraged Mini-OS [34], which is a
minimal stub domain directly interfacing with the Xen hypervisor. DomC exposes
cryptographic library functions to the corresponding coupled workload VM
(DomU) or automatically interposes external devices used by DomU to transparently
encrypt/decrypt them. The privileged operations that traditionally would be
done by Dom0, like domain building, domain migration etc. are segregated to a
single-purpose stub domain DomT, the Trusted Domain Builder.

Usage Modes of DomC. Xen uses a split driver model for device drivers. It
provides a front-end and a back-end module (cf. Figure 3). The latter controls the
actual physical device while the former provides a virtualized representation of
that device to VMs. In CaaS , we leverage this split-driver mechanism to connect
DomC as a Xen virtual device to DomU. Figure 3 shows the two operation modes of
DomC that we describe below: Virtual Security Module and Secure Device Proxy.

Virtual Security Module. In this mode of operation, DomC resembles a security
module such as an HSM. In this mode, DomU has to be aware of the DomC so that
it can use its interface for outsourcing traditional cryptographic operations like

Hypervisor

Dom0 DomC DomU

Physical Device Encrypted data Plain data

VSM Secure Device Proxy Drivers Client Program

Device
front-end

Module
front-end

Module
back-end

Device
back-end

Device
front-end

Device
back-end

Fig. 3. Usage Modes: DomU can use DomC either as Virtual Security Module (VSM)
or to secure its storage or network data with a transparent proxy.

an SSL/TLS wrapper for a web service running in the VM. In our prototypical
implementation DomC emulates an HSM and provides a standardized PKCS#11-
compliant interface for DomU.

Secure Device Proxy. In this mode, DomC acts as a transparent layer between
DomU and external devices, such as attached storage medium or network card.
We use this layer as a convenient building block for advanced applications such
as booting fully encrypted VM images (cf. Section 3.3) or for legacy VMs that
still want to profit from full-disk encryption. To achieve the pass-through, we
chain two front-end-back-end communication channels. The first channel exists
between DomC and Dom0 where DomC connects to a device offered by Dom0 (e.g.,
storage or network). The second channel exists between DomC and DomU, where
DomC provides an identical device interface to DomU. DomC encrypts and decrypts
on-the-fly all data in this stream. Although it is technically feasible that DomC
writes directly to the physical device, routing encrypted I/O streams through
Dom0 avoids implementing (redundantly) device drivers in each DomC.

Both modes are not mutually exclusive. A transparent encryption layer can
be used while DomU is yet aware of the DomC and additionally uses it for explicit
cryptographic operations.

3.2 Security Extensions to the Xen Hypervisor

While the above mentioned modes seem not to require any changes to the Xen
hypervisor, default Xen does not prevent Dom0 from reading/writing another VM’s
memory. To prevent that, we added security extensions to the Xen hypervisor:

1. Additional Mandatory Access Control for low-level resources (e.g., memory)
to isolate the client’s DomC from any other domain including Dom0 (Fig. 4(a)).

2. The binary privileged/unprivileged hypercall scheme was made more fine-
grained to drastically de-privilege Dom0 and to support certain hypercalls
only for certain domains, namely DomT and DomC (Fig. 4(b)).

In default Xen, different mechanisms to access foreign memory of other domains
exist (cf. Figure 4(a)):

X
en

DomU/C

Physical
Device

Dom0

Memory

C.1 Configure

 DMA

C.2 Read memory

A.1 Grant
 access

A.2 Map

B. Authority

(Shared)

IO
M

M
U

Access Control

DomT

(a) Additional access control.

Before

Unprivileged (29%)
Dom0 (71%)

After

Unprivileged (29%)
Removed (14%)
Shared (5%)
DomT (36%)
Dom0 (15%)

(b) Hypercall disaggregation.

Fig. 4. Access Control and disaggregation modifications of our Xen version.

Privileged Domains. In default Xen, Dom0 is always able to map the memory
pages of another domain since it needs to set up a new domain’s memory
before it is running. In order to remove this privilege, we separated the domain
building functionality into DomT. To this extent we ported the Xen domain
managment library libxl to Mini-OS to reside in DomT. Additionally, Xen’s
binary privileged/unprivileged hypercall scheme which allowed Dom0 to map
arbitrary foreign memory needed to be refined in order to support different
domains with different privileges. This new access control is enforced in the logic
of the Xen hypervisor for mapping foreign memory pages into a domain’s memory
range by extending the Xen Security Module (XSM) accordingly. The privilege
of Dom0 to access foreign memory is then disabled in the hypervisor while Dom0
needs to forward domain management requests (building, migrating, destroying)
to DomT which has now memory authority (step B). The concept of disaggregating
code from Dom0 was pioneered by Murray et al. [24] and enhanced in our design.

Grant tables. Grant tables are the default mechanism for establishing shared
memory pages between different domains (e.g. for split drivers). The owning
domain can discretely grant access to its memory pages to other domains (step
A.1), which are then able to map these shared pages into their own memory space
(step A.2). In CaaS , no additional access control on Grant Tables is required, as
DomU and DomC are in control of their own pages and thus can by default deny
any access from other domains.

IOMMU. A potential security risk are physical devices featuring Direct Memory
Access (DMA), having access to the entire physical memory. DMA is configured
by the domain that is in control of the physical hardware (by default Dom0; step
C.1). We require hardware support in the form of an IOMMU (step C.2) to
exclude the whole VM and Xen memory from the DMA range.

3.3 Detailed Image Setup Workflow
To ensure that the client can entrust her secrets and images to the cloud,
we leverage standard Trusted Computing protocols for the Trusted Platform
Module (TPM) [36]. This technology provides the means to establish a trusted
end-to-end channel since the client can encrypt data such that only a platform
in a certain trusted state S (i.e., running our modified version of Xen) is able to
decrypt this data. Technically, this is realized using a TPM certified binding key
(skTPM , pkTPM) where the secret key skTPM is bound to the platform state S.
The certificate cert proves that the key-pair was created by a genuine TPM and
hence the binding property holds. To make the same key available on all cloud
nodes, we use migratable keys, i.e., its usage is bound to one or more trustworthy
platform states but not a particular platform. For brevity, we omit the setup of
this TPM key from our protocol and refer to related work [10]. An authenticated
boot [35] measures the platform state, during boot. Moreover, we make use of a
TPM feature called locality to ensure that only the trusted hypervisor (i.e. not
Dom0) is able to use the certified binding key skTPM and to further allow Dom0
to still use the TPM, however, not at the locality reserved for the hypervisor.
The pseudocode in algorithm 1 depicts the setup process of the client and trust
establishment in detail.

Algorithm 1 Pseudocode for Setup Steps
1: get (cert, pkT P M) from cloud node
2: if Validate(cert, pkT P M) then
3: k ← GenerateSymmetricKey()
4: domCimage← CreateCustomDomCImage()
5: InjectKey(domCimage, k)
6: encu ← Encrypt(domUimage, k)
7: encc ← Encrypt(domCimage, pkT P M)
8: ID ← UploadAndRegister(encc, encu)
9: end if

After the client verified pkTPM using the certificate cert (line 2), she generates
at least one new secret k (line 3) and securely injects that secret into her local
plaintext image of DomC (line 5). DomC is able to act as transparent cryptographic
protection (e.g., encryption) of an attached block storage (Secure Device Proxy
mode) or as a SmartCard using key k. The DomU image is encrypted under k
(step 6) and the configured DomC image is encrypted under pkTPM (line 7) which
constitutes the trusted channel explained earlier. Both encrypted images are then
uploaded and registered in the cloud under a certain ID (line 8). Using ID, the
client can manage her images, e.g., launch an instance from her DomU image.

3.4 Detailed Launching Workflow
The instantiation of the uploaded encrypted DomU image can be divided in two
steps as shown in Figure 5: First, and only once after booting our modified Xen,

:Our Xen :TPM :DomT :DomU :DomC :Dom0

1. Memory Authority

2. Locality for DomT

3. encc

4. domCimage

5. Insert PV-Grub
6. Set up device drivers

7. schedule()

8. ReadBlock(x)

9. ReadBlock(x)

e

10. d = Decrypt(e, k)

d

Fig. 5. Booting DomU and coupling with corresponding DomC

DomT is started with memory authority for the purpose of domain creation (step
1). Additionally, the locality of the TPM is set up in such a way that DomT is the
only one allowed to use skTPM (step 2). DomT uses this skTPM to decrypt the
DomC image domCimage with the aid of the TPM4 (steps 3 & 4). DomT inserts the
Xen bootloader PV-Grub5 into the still pristine DomU image which is necessary
for DomU to be able to boot from a device offered by DomC (step 5). Then, the
front-end devices (cf. Figure 3) are set up to be available to PV-Grub to boot
from (step 6). Once DomU is scheduled for the first time (step 7) and tries to
read a block from the attached virtual disk (step 8), it gets transparently routed
through DomC which reads the actual sectors from the traditional disk provided
by Dom0 and decrypts them for DomU (steps 9 & 10).

Suspension and Live Migration. In order to support live migration, the
standard Xen migration protocol needs to be wrapped but in essence works
unaffectedly from the perspective of the client and DomU. Since we ported the
Dom0 Xen interface (libxl) to DomT, the live migration request in Dom0 is simply
forwarded to DomT which has access to any DomU’s memory. DomT then migrates
a running VM on-the-fly by first attesting the target host’s integrity using its
certificate cert and by piecemeal transmission of the memory content to the
new trusted target host. Instead of migrating plaintext VM memory from one
Node to another, the memory must be encrypted, since migration requires the
involvement of Dom0 and a potentially untrusted network.
4 The use of asymmetric cryptography in the TPM is an abstraction. Technically, the
decryption using a TPM is more involved and requires wrapping a symmetric key
with the pkTPM/skTPM pair.

5 http://wiki.xen.org/wiki/PvGrub

http://wiki.xen.org/wiki/PvGrub

To restore the transferred state on the target platform, DomC has to be
migrated as well in order to decrypt the migrated DomU state on the target
platform. Restoring a VM state requires platform-dependent modifications to the
state, such as rebuilding the memory page-tables. DomT’s domain building code
performs these modifications on DomU during DomU’s resumption. Afterwards the
new DomC is able to decrypt and resume the DomU state on the target platform and
the old DomC on the source platform can be discarded. To achieve the protection
of the transferred DomC state, this state is encrypted under the TPM key pkTPM .
Thus, only a target node running our trustworthy hypervisor is able to decrypt
and resume the DomC state. We need to make sure that the version of our trusted
Xen is not run outside of a trusted datacenter, e.g. our partly trusted cloud
provider. For the sake of simplicity, in our proof-of-concept implementation we
only allowed to migrate to other secure hosts that are within the same class-
C-network. In case of suspension, the protocol works identical, except that the
“target platform” is cloud storage to which the protected DomC and DomU states
are saved by DomT.

4 Security

In this section we discuss how our architecture protects the client’s cryptographic
keys with regard to the requirements and adversary model defined in Section 2.
We also discuss the corner cases that our architecture does not handle.

Compute Administrator. Our solution protects against a malicious Com-
pute Administrator. This is guaranteed by the logical isolation of domains by
the trusted hypervisor and the de-privileged management domain in which the
administrators operate. Extracting the domain building process to DomT com-
bined with the TPM based protocols (cf. Section 3.2) ensures that Dom0 cannot
access DomT, DomC’s or DomU’s memory in plaintext. We empirically verified the
mitigation of known attacks to extract confidential information from VMs [25].

Any modifications Dom0 does on the encrypted images during launch will lead
to integrity verification failures and abortion of the launch, and hence form a
denial-of-service. The same holds for the saved, encrypted state of DomU and
DomC during migration and suspension. As mentioned in our adversary model, we
exclude compute administrators with physical access, since it seems there exists
no practical solution against these attacks yet.

Storage Administrator. Our solutions protects against a malicious Storage
Administrator by storing images only in encrypted and integrity protected form.
Thus, this attacker cannot extract any sensitive information from the images
and any modification to the images before loading them into memory results in
a denial-of-service attack. Solutions against replay attacks of outdated images,
which we do not consider in this paper, can also be based on the TPM [29,37].

Network Administrator. Images and VM states are protected (encrypted
and integrity checked) during provision to the cloud, transfer between cloud nodes
and storage during migration and suspension, respectively. Thus, a malicious
Network Administrator cannot extract the client’s keys from intercepted network

data. However, dropping network traffic or tampering with it will lead to a
denial-of-service attack. Freshness of network communications to protect against
replay attacks or injection of non-authentic data is easily achieved by using
message nonces or by establishing session keys.

End-Users. If an external attacker gains full (i.e. root) access to DomU, the
attacker can misuse DomC as an oracle, e.g., to sign arbitrary messages in the
client’s name. This problem also applies to HSMs. A common countermeasure is
an auditing mechanism within DomC that detects misuse based on heuristics (e.g.,
usage thresholds). The secrets however remain protected in DomC.

Malicious Clients. Since keys are neither stored nor processed within a
customer VM, there is no risk of accidentally sharing them in public VM images.
Thus, our solution protects against Malicious Clients, who inspect shared public
VM images for credentials.

Adherence. Due to our isolation from the management domain, the cloud
provider can no longer monitor the client’s behaviour. This is a potential invitation
to hide malicious/criminal activities such as providing illegal content. Other
solutions [9] tackled this issue by installing a mutually trusted observer for the
client VM’s activities, which simultaneously preserves the client VM’s privacy
and checks the client’s activity for conformance.

5 Performance Evaluation

We evaluated the performance overhead induced by offloading cryptographic
operations to DomC for both the Secure Device Proxy and Virtual Security Module
modes. Our test machine is a Dell Optiplex 980 with an Intel QuadCore i7 3.2GHz
CPU, 8GB RAM, and a Western Digital WD5000AAKS - 75V0A0 hard-drive
connected via SATA2.

Secure Device Proxy. This setup consists of the Xen v4.1.2 hypervisor with
our extensions, an Arch Linux Dom0 (kernel 3.2.13), a Debian DomU (kernel 3.2.0)
and a Mini-OS based DomC and DomT. All domains and the hypervisor execute in
64-bit mode and each guest domain has been assigned one physical core. DomU
and DomT have been assigned 256 MB of RAM while each DomC runs with 32 MB.
All I/O data streams from DomU to the virtual block storage are passing through
DomC and are transparently encrypted using AES-128 in CBC-ESSIV mode based
on code ported to Mini-OS from the disk-encryption subsystem dm-crypt of the
Linux kernel. We measure four scenarios:

Traditional. Standard Xen setup without an interposed DomC and no encryption.
dm-crypt in DomU. This extends the Traditional scenario with AES-128 CBC-

ESSIV mode encryption of I/O data in DomU using dm-crypt.
DomC pass-through. This scenario interposes DomC between DomU and Dom0 to

merely pass-through I/O without encryption.
DomC (AES-128). This scenario extends the pass-through scenario with AES-

128 CBC-ESSIV en-/decryption in DomC.

In a traditional Linux running as DomU, block device buffering is used for reads
and writes, where writes occur asynchronously. In this setup, the performance
overhead was negligible. To give a worst-case scenario, in this throughput bench-
mark we measure the induced performance overhead with all caching disabled and
additionally only read/write random sectors to avoid hard disk buffer effects. The
bandwidth measurements were taken using the fio tool6 in the DomU. For each of
the aforementioned four combinations measurements were taken with each read
or write lasting exactly 10 minutes (see Figure 6). Performance measurements
with asynchronous I/O, disk buffers left on (default Linux settings) and linear
reads produced almost negligible overhead but had a high standard deviation.

 -17%

 -15%

 -2%

 0 10 20 30 40 50

DomC (AES-128)

DomC Pass-Through

dm-crypt in DomU

Traditional

Read (MB/s)

 -10%

 -10%

 ~0%

 0 10 20 30 40

DomC (AES-128)

DomC Pass-Through

dm-crypt in DomU

Traditional

Write (MB/s)

Fig. 6. Disk throughput performance

Virtual Security Module. Our setup consists of SoftHSM 7, a software-based
implementation of a HSM that can be accessed via a PKCS#11 interface. We
compare two scenarios: a) where SoftHSM is running in a Linux-based DomC,
and b) when running inside a DomU and being accessed directly. In scenario a,
the server resides within DomC and the client in DomU, and the communication
is realized through our backend-frontend Virtual Security Module interface. In
scenario b, both server and client reside in DomU and the network loopback device
is used.

We measure the performance of RSA signing using an HSM. This is a typi-
cal scenario found in practice, e.g., CAs signing TLS certificates or signing of
domain names within the DNSSEC system. In particular we are focusing on
the latter scenario and leverage the benchmark software ods-hsmspeed from the
OpenDNSSEC project8. As parameters for ods-hsmspeed, we selected 8 threads
requesting signatures from the HSM, RSA1024 as the signing algorithm, and
varying number of total signatures requested ranging from 1 to 10000.

Our results are illustrated in Figure 7. When requesting a low number of
signatures, i.e., only 1 or 10, the costs for the connection and benchmark setup
are more profound. However in practical scenarios, we expect a large number of
signatures that are requested. Comparing the performance in terms of signatures
per second between a SoftHSM residing in DomU vs. DomC, we notice a less than
3% overhead when offloading the cryptographic operations to DomC.
6 FIO disk benchmark – http://freecode.com/projects/fio
7 http://www.opendnssec.org/softhsm/
8 http://www.opendnssec.org/

http://freecode.com/projects/fio
http://www.opendnssec.org/softhsm/
http://www.opendnssec.org/

100 101 102 103 104

Signatures Performed

0

200

400

600

800

1000

Si
gn

at
ur

es
 /

Se
co

nd

VSM in DomU
VSM in DomC

Fig. 7. Comparing the signing performance of a software-based HSM residing in
DomU vs. DomC.

6 Related Work

The field of cloud security is very active and touches various research areas. In
this section, we compare our CaaS solution to the closest related work.

Trusted Computing. In physical deployments, cryptographic services are
typically provided by cryptographic tokens [2], hardware-security modules [17],
generic PKCS#11-compliant modules, e.g. smart cards, and the Trusted Platform
Module (TPM) [36]. In our approach, we study how such cryptographic services
can also be securely provided in virtualized form in cloud deployments.

To provide TPM functionality to virtual machines, virtual TPMs have been
proposed [5,28] and secure migration of VM-vTPM pairs by Danev et al. [15].
Our CaaS is conceptually a generalized form of such as a service, since DomC
could also provide a vTPM daemon. However, in contrast to [5], our solution
does not rely on a security service running within a potentially malicious Dom0.

Providing a cryptographic service over a network has been considered in
large-scale networks, such as peer-to-peer or grid systems, by Xu and Sandhu [40].
Berson et al. propose a Cryptography-as-a-Network-Service [6] for performance
benefits, by using a central service equipped with cryptographic hardware accel-
erators. Our CaaS targets specifically multi-tenant cloud environments and aims
at tightly but securely coupling the client and her credentials to enable advanced
applications such as transparent encryption of storage.

Different cloud architectures that rely on trusted computing have been pro-
posed that ensure protected execution of virtual machines. The Trusted Cloud
Computing Platform (TCCP) [31] by Santos et al. and the architecture proposed
by Schiffman et al. [33] use TCG remote attestation to prove the trustworthiness
of the cloud’s compute nodes. Our approach also builds on Trusted Computing
technology but with the goal to protect cryptographic operations and credentials
from external and internal attackers. Santos et al. extended their TCCP archi-
tecture to address the problems of binary-based attestation [32] and data sealing
with an approach very similar to property-based attestation [27].

Virtualization Security. Research that advocates the benefits of virtualization
technology for security purposes has a long-standing history, even decades before
the advent of cloud computing [20,21,26], and has introduced concepts that estab-
lish secure (virtual) execution environments [11,18]. They implement the concept
of moving the security management to the virtualization layer by providing two
different execution security contexts for VMs on top of a trusted VMM. Our
architecture differs from those in that we provide client-controlled cryptographic
primitives for multi-tenant virtualized environments (such as clouds) and thus
have to tackle the challenges of how to securely provision and use those primitives
in the presence of a malicious cloud management domain.

Other related works leverage nested virtualization to advocate similar goals as
CaaS . Williams et al. introduced the Xen-Blanket [39], which adds an additional
virtualization layer, empowering clients to avoid cloud provider lock-in. The
CloudVisor [41] architecture by Zhang et al. adds a small hypervisor beneath the
Xen hypervisor to protect client’s DomU against an untrusted or compromised
VMM or Dom0 (including encrypted VM images). However, nested virtualization
induces an unacceptable performance overhead and usually requires introspection.
In CaaS , we avoid nested virtualization and instead apply Murray’s concept
of Dom0 disaggregation [24] on top of the commodity Xen hypervisor, which is
assumed trustworthy. We note, that hardening hypervisors against attacks is an
active, orthogonal research area [38] from which our solution benefits.

The closest related work to ours, is the Self-Service Cloud (SSC) framework
by Butt et al. [9], which was developed independently and in parallel to our work.
In SSC, clients are able to securely spawn their own meta-domain, including their
own user Dom0, in which they are in control of deployed (security) services, such
as DomU introspection, storage intrusion detection, or storage encryption. This
meta-domain is isolated from an untrusted Dom0 using a mandatory access control
framework in the Xen hypervisor (XSM [30]). In contrast to SSC, our CaaS takes
care of client-controlled cryptographic operations and builds the basis for the
actual key provisioning. We tackle the challenge of how to protect and securely
use our DomC, running isolated but tightly coupled to its DomU. This requires
modifications to the VM life cycle management, i.e., secure migration/suspension
of DomU and instantiating fully encrypted DomU images.

Secure Execution Environment. Instead of relying on the trustworthiness of
the virtualization layer, DomC would ideally run in a Secure Execution Environment
(SEE) that is available as a hardware security extension on modern CPUs, e.g.,
Flicker by McCune et al. [23]. However, invocations of SEE suffer from the critical
drawback that they incur a significant performance penalty. Consequently, this
makes them unsuitable for streaming operations such as encryption of data of
arbitrary length. McCune et al. address this issue with their TrustVisor [22]
by leveraging hardware virtualization support of modern platforms, trusted
computing technology, and a custom minimal hypervisor to establish a better
performing SEE. Conceptually, TrustVisor is related to our CaaS from the
perspective of isolating security sensitive code in an SEE. However, TrustVisor is

designed to protect this code from an untrusted legacy OS while CaaS targets the
specific scenario of cloud environments and thus faces more complex challenges:
First, CaaS has to address an additional virtualization layer to multiplex multiple
clients’ VMs. Second, our adversary model must consider a partially untrusted
cloud provider and malicious co-located clients.

7 Conclusion and Future Work

In this paper we present the concept of secret-less virtual machines based on
a client-controlled Cryptography-as-a-Service (CaaS) architecture for cloud in-
frastructures. Analogously to Hardware Security Modules in the physical world,
our architecture segregates the management and storage of cloud clients’ keys
as well as all cryptographic operations into a secure crypto domain, denoted
DomC, which is tightly coupled to the client’s workloads VMs. Extensions of
the trusted hypervisor enable clients to securely provision and use their keys
and cryptographic primitives in the cloud. DomC can be used as virtual security
module, e.g., vHSM, or as a transparent encryption layer between the client’s
VM and e.g. legacy storage. Furthermore, these extensions protect DomC in a
reasonable adversary model from any unauthorized access that tries to extract
cryptographic material from the VM – either from a privileged management
domain or from outside the VM. The flexible nature of DomC allows for building
more advanced architectures, such as Trusted Virtual Domains [10], on top of
our CaaS. Evaluation of full disk encryption with our reference implementation
showed that DomC imposes a minimal performance overhead. Future work aims
at methods to mitigate run-time attacks against DomU, which enable an attacker
to misuse the securely stored credentials. An avenue to mitigate this issue would
be to install usage quotas heuristics in order to detect misuse. Further, secure
logging in DomC would support post-misuse analysis.

Acknowledgments

This research has been supported by the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n◦257243 (TClouds project:
http://www.tclouds-project.eu).

References

1. AlertLogic. An empirical analysis of real world threats: State of cloud security report.
http://www.alertlogic.com/resources/state-of-cloud-security-report/,
2012.

2. R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov. Cryptographic processors
– a survey. Proceedings of the IEEE, 94(2):357–369, Feb. 2006.

3. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In 19th ACM
symposium on Operating systems principles (SOSP’03). ACM, 2003.

http://www.alertlogic.com/resources/state-of-cloud-security-report/

4. A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a system for secure multi-party
computation. In 15th ACM conference on Computer and communications security
(CCS’08). ACM, 2008.

5. S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and L. van Doorn. vtpm:
virtualizing the trusted platform module. In 15th conference on USENIX Security
Symposium. USENIX, 2006.

6. T. Berson, D. Dean, M. Franklin, D. Smetters, and M. Spreitzer. Cryptography
as a Network Service. In Network and Distributed Systems Security Symposium
(NDSS’01), 2001.

7. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-
preserving computations. In 13th European Symposium on Research in Computer
Security: Computer Security (ESORICS’08). Springer, 2008.

8. S. Bugiel, S. Nürnberger, T. Pöppelmann, A.-R. Sadeghi, and T. Schneider. Ama-
zonIA: When Elasticity Snaps Back. In 18th ACM Conference on Computer and
Communications Security (CCS’11). ACM, Oct 2011.

9. S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy. Self-service cloud
computing. In 19th ACM Conference on Computer and Communications Security
(CCS’12). ACM, October 2012.

10. L. Catuogno, A. Dmitrienko, K. Eriksson, D. Kuhlmann, G. Ramunno, A. Sadeghi,
S. Schulz, M. Schunter, M. Winandy, and J. Zhan. Trusted Virtual Domains–Design,
Implementation and Lessons Learned. First International Conference on Trusted
Systems (INTRUST), 2009.

11. X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger, D. Boneh,
J. Dwoskin, and D. R. Ports. Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating systems. ACM SIGOPS, 2008.

12. Y. Chen and R. Sion. To cloud or not to cloud?: musings on costs and viability. In
2nd ACM Symposium on Cloud Computing (SOCC’11). ACM, 2011.

13. CVE-2007-4993. Bug in pygrub allows guests to execute commands in dom0.
14. CVE-2008-1943. Buffer overflow in xensource allows to execute arbitrary code.
15. B. Danev, R. J. Masti, G. O. Karame, and S. Capkun. Enabling secure VM-

vTPM migration in private clouds. In 27th Annual Computer Security Applications
Conference (ACSAC’11). ACM, 2011.

16. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–208, 1983.

17. J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W. Smith, and
S. Weingart. Building the IBM 4758 secure coprocessor. IEEE Computer, 2001.

18. T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: a virtual
machine-based platform for trusted computing. In 19th ACM symposium on
Operating systems principles (SOSP’03). ACM, 2003.

19. C. Gentry. Fully homomorphic encryption using ideal lattices. In 41st annual ACM
symposium on Theory of Computing. ACM, 2009.

20. N. Kelem and R. Feiertag. A separation model for virtual machine monitors. In
IEEE Computer Society Symposium on Research in Security and Privacy, pages 78
–86, May 1991.

21. S. E. Madnick and J. J. Donovan. Application and analysis of the virtual machine
approach to information system security and isolation. In Workshop on virtual
computer systems. ACM, 1973.

22. J. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. TrustVisor:
Efficient TCB reduction and attestation. In IEEE Symposium on Security and
Privacy (SP’10). IEEE, 2010.

23. J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki. Flicker: An execution
infrastructure for TCB minimization. In 3rd European Conference on Computer
Systems (EuroSys’08). ACM, 2008.

24. D. G. Murray, G. Milos, and S. Hand. Improving xen security through disaggregation.
In 4th Int. conference on Virtual execution environments (VEE’08). ACM, 2008.

25. F. Rocha and M. Correia. Lucy in the sky without diamonds: Stealing confidential
data in the cloud. In 41st International Conference on Dependable Systems and
Networks Workshops (DSNW’11). IEEE, 2011.

26. J. M. Rushby. Proof of separability: A verification technique for a class of a security
kernels. In 5th Colloquium on International Symposium on Programming. Springer,
1982.

27. A.-R. Sadeghi and C. Stüble. Property-based attestation for computing platforms:
caring about properties, not mechanisms. In Workshop on New security paradigms
(NSPW’04). ACM, 2004.

28. A.-R. Sadeghi, C. Stüble, and M. Winandy. Property-based TPM virtualization.
In 11th International Conference on Information Security (ISC’08). Springer, 2008.

29. A.-R. Sadeghi, M. Wolf, C. Stüble, N. Asokan, and J.-E. Ekberg. Enabling fairer
digital rights management with trusted computing. In 10th International Conference
on Information Security (ISC’07). Springer, 2007.

30. R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez, S. Berger, J. L. Griffin, and
L. v. Doorn. Building a mac-based security architecture for the xen open-source
hypervisor. In 21st Annual Computer Security Applications Conference (ACSAC’05).
IEEE, 2005.

31. N. Santos, K. Gummadi, and R. Rodrigues. Towards trusted cloud computing. In
Hot topics in cloud computing (HotCloud’09). USENIX, 2009.

32. N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu. Policy-sealed data: A
new abstraction for building trusted cloud services. In 21nd USENIX Security
Symposium. USENIX, 2012.

33. J. Schiffman, T. Moyer, H. Vijayakumar, T. Jaeger, and P. McDaniel. Seeding clouds
with trust anchors. In ACM workshop on Cloud computing security (CCSW’10).
ACM, 2010.

34. S. Thibault. Stub domains: A step towards dom0 disaggregation. http://www.xen.
org/files/xensummitboston08/SamThibault_XenSummit.pdf, 2010.

35. Trusted Computing Group (TCG). TCG specification architecture overview (revi-
sion 1.4), 2007.

36. Trusted Computing Group (TCG). Trusted platform module specifications, 2008.
37. M. van Dijk, J. Rhodes, L. F. G. Sarmenta, and S. Devadas. Offline untrusted

storage with immediate detection of forking and replay attacks. In 2007 ACM
workshop on Scalable trusted computing (STC’07). ACM, 2007.

38. Z. Wang and X. Jiang. Hypersafe: A lightweight approach to provide lifetime
hypervisor control-flow integrity. In 2010 IEEE Symposium on Security and Privacy
(SP’10). IEEE, 2010.

39. D. Williams, H. Jamjoom, and H. Weatherspoon. The xen-blanket: virtualize
once, run everywhere. In 7th ACM european conference on Computer Systems
(EuroSys’12). ACM, 2012.

40. S. Xu and R. Sandhu. A scalable and secure cryptographic service. In Data and
Applications Security XXI, volume 4602 of LNCS. Springer, 2007.

41. F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor: retrofitting protection of
virtual machines in multi-tenant cloud with nested virtualization. In 23rd ACM
Symposium on Operating Systems Principles (SOSP’11). ACM, 2011.

http://www.xen.org/files/xensummitboston08/SamThibault_XenSummit.pdf
http://www.xen.org/files/xensummitboston08/SamThibault_XenSummit.pdf

