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ABSTRACT
Cloud infrastructures are designed to share physical resources
among many different tenants while ensuring overall secu-
rity and tenant isolation. The complexity of dynamically
changing and growing cloud environments, as well as insider
attacks, can lead to misconfigurations that ultimately result
in security failures. The detection of these misconfigura-
tions and subsequent failures is a crucial challenge for cloud
providers—an insurmountable challenge without tools.
We establish an automated security analysis of dynamic

virtualized infrastructures that detects misconfigurations and
security failures in near real-time. The key is a systematic,
differential approach that detects changes in the infrastruc-
ture and uses those changes to update its analysis, rather
than performing one from scratch. Our system, called Cloud
Radar , monitors virtualized infrastructures for changes, up-
dates a graph model representation of the infrastructure,
and also maintains a dynamic information flow graph to
determine isolation properties. Whereas existing research
in this area performs analyses on static snapshots of such
infrastructures, our change-based approach yields significant
performance improvements as demonstrated with our proto-
type for VMware environments.

1. INTRODUCTION
Infrastructure clouds are rapidly and dynamically changing

systems due to self-service provisioning and on-demand scal-
ability. Tenant as well as provider administrators frequently
adapt the configuration of the sub-system they control, con-
stituting in dynamic changes for the entire configuration.
These changes may create security vulnerabilities with re-
spect to the tenants’ individual or the provider’s overall
security policies. According to studies by ENISA [5] as well
as CSA [4], isolation failures as well as operational complexity
leading to misconfiguration and security failures are among
the top threats in cloud computing. Those vulnerabilities
can be introduced as a non-deliberate fault or be the delib-
erate act of an insider attacker, affecting all the pillars of
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infrastructure clouds: computing, networking, and storage.
While misconfiguration of network components (e.g., subnets
and VLAN IDs) are recognised as the faults of isolation
breaches, unwanted co-location of computing resources [11]
or misconfigured storage isolation have been observed, too.
While configurations of multi-tenant infrastructure clouds are
complex in themselves, overseeing the security consequences
of many configuration changes by multiple administrators
can easily be beyond the grasp of human operators.
Indeed, the configuration complexity we observe in dynam-

ically changing infrastructure clouds calls for tool-support.
Existing research in this space is mostly focused on dynamic
infrastructure analysis of non-security properties [14], node
integrity monitoring [13] or establishing security analyses of
static systems given by a configuration snapshot [2]. While
the latter results give us confidence about reasoning on se-
curity consequences of infrastructure cloud topology and
configurations, they suffer from blind spots due to transient
security failures as well as from efficiency problems. In fact,
an isolation case-study [3] using this approach showed that
the analysis of a mid-sized virtualized infrastructure required
about seven minutes for extracting the configuration and
building up a model and one minute on the actual analysis
of the model. Performing such an analysis in a dynamic
environment will lead to a backlog of changes that need to be
analysed, an increase in the response times in case of security
incidents, as well as scalability and efficiency problems.
Consequently, it is our primary goal to reduce the times

for configuration extraction, model building and analysis by
establishing a systematic differential approach that does not
require a full extraction and analysis on each configuration
change, but still maintains strong security foundations all the
way. We realise this goal with a practical security system that
uses a model-based security analysis. It maintains a graph
representation synchronised with the actual configuration
of the virtualized infrastructure and accepts change events
produced by cloud management hosts to update its own
model. The model and its updates form the foundation for
a differential security analysis that maintains an information
flow graph for analysing isolation properties and which tries
to find violations of specified security policies.
Our Contributions. With the overall research goal to

establish a differential security analysis of dynamic infras-
tructure clouds, we make the following contributions: 1) We
establish an architecture that caters for near to real-time
detection of configuration changes in heterogeneous virtual-
ized infrastructures. 2) In order to maintain a synchronised
graph model of these infrastructures, we propose a set of algo-



rithms for the computation of graph deltas (added/removed
nodes and edges, changed node attributes) applicable to a
graph model based on change events. 3) We propose a novel
approach that soundly maintains an information flow graph
for the dynamic graph model of the infrastructure. 4) We
offer a practical implementation of our system, called Cloud
Radar (CR), for VMware environments. Our comprehensive
evaluation shows that the differential approach reduces the
overall analysis time significantly, putting near-to-real-time
analysis in our reach. For a broad spectrum of cloud opera-
tions and even for large infrastructures, we measure model
update times in the order of milliseconds, which renders our
approach several orders of magnitude more efficient than pre-
vious static analysis approaches. 5) We establish a security
analysis showing that Cloud Radar can be set up as security
monitoring of insider adversaries.

2. SYSTEM AND SECURITY MODEL
An infrastructure cloud consists of (virtualized) comput-

ing, networking and storage resources, which are configured
through a management host and its well-defined interface.
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Figure 1: System model of the differential security
monitoring covering compute, network, and storage.
As shown in Figure 1, the system model of this work is

poised towards a differential analysis based on change events
issued by the management hosts when the infrastructure
is re-configured. The analysis system uses these change
events to continuously update a graph representation of
the infrastructure, the Realization model, which is used for
subsequent analysis. As long as the management host issues
the events correctly, the model covers malicious adversaries,
insiders and externals alike.

2.1 System Model
We represent the virtualized infrastructure in a graph

model, called Realization model (cf. [3]): The model is an
undirected, vertex typed and attributed graph. The vertices
of the graph represent the components of the virtualized
infrastructure, which may be entire sub-systems, such as
physical servers or virtual machines, or low-level compo-
nents, such as virtualized network interfaces. Vertices are
typed, e.g., type vm denotes a virtual machine, and anno-
tated with name/value attributes. The attributes encode
detailed properties of the components and capture their con-
figuration. The edges of the graph represent the connections
and relationships among components of the virtualized in-
frastructure, therefore encoding its topology. The vertex
types of our model are organised in a hierarchy graph, i.e.,
a directed acyclic graph (DAG) where the edges represent
a parent-to-child relation. The hierarchy graph reflects the
inherent hierarchy found in the infrastructure. For example,

a virtual machine belongs to a physical host, and therefore a
physical host has a directed edge to a virtual machine.
Considering the example from Figure 1, we see that the

Realization model captures all areas of the virtualized in-
frastructure: computing, networking and storage. While the
actual model encodes fine-grained components of all these
areas, e.g., storage being represented as virtual disks, file
backend objects and storage pools, we focus our explanation
on the networking components to prepare the ground for
examples in subsequent sections. Physical hosts and their
hypervisors provide networking to VMs by virtual switches
that connect the VMs to the network. A virtual switch
contains virtual ports, to which the VMs are connected via
a virtual network card (vNIC). Virtual ports are aggregated
into port groups, which apply a common configuration to a
group of virtual ports. Virtual LANs (VLANs) allow a logi-
cal separation of network traffic between VMs by assigning
distinct VLAN IDs to the associated port groups.

2.2 Threat Model
We establish a threat model based on the dependability

taxonomy [1]. Users and administrators can be malicious
or non-malicious. Thereby, we cover all classes of human-
made faults, independent from intent or capability, that is,
faults can be introduced deliberately as result of a harmful
decision or without awareness; faults can be introduced by
accident or by incompetence. These fault classes include
misconfigurations as well as malicious insider administrators
and, thereby, constitute a strong adversary model. Agents
that operate on behalf of a human, e.g., as part of cloud
automation, are also covered by this threat model, because
we do not differentiate between the issuers of changes.
We only place one constraint on how the adversary can

exert threats upon the virtualized infrastructure: The adver-
sary is bound to the well-defined cloud manager API and
cannot subvert the communication channel between the man-
agement hosts and the analysis system. In §5 we discuss
and assess multiple deployment approaches to realise such a
constraint in a practical environment. For example, based
on isolation of the monitoring and management networks
from the administrators, as well as using mandatory access
control. Note that we consider the security of the software
for the management host and the hypervisors as out of scope.

3. DESIGN AND IMPLEMENTATION
In this section, we describe the design and implementation

of our Cloud Radar system. The goal of our system is to
detect – in near real-time – configuration changes that impact
the security of virtualized infrastructures. On a high-level,
the system works in the following way.
The start of the system’s workflow is an initial snapshot

of the configuration and topology of the entire virtualized
infrastructure represented as a graph model. An initial infor-
mation flow analysis determines how information may flow
within the infrastructure, in order to determine isolation
properties. Isolation is critical in multi-tenant virtualized
infrastructure and the concern of many security policies. The
crucial part of our approach is that we operate on change
events, which are the result of a change in the infrastructure,
and which needs to be represented in the model by trans-
forming it according to the event. The transformation of the
model may result in new or changed information flow in the
system, and the information flow analysis is differentially up-
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Figure 2: System Architecture and Components.

dated based on the change event. Finally, after each change
the resulting model will be analysed with regard to a given
security policy or a set of policies.
We depict the system architecture and components that

implement such an analysis workflow in Figure 2. The system
is composed of the following components. A Probe knows
how to monitor the virtualized infrastructure and how to
obtain change events. It is tied to a specific virtualization
technology, e.g. VMware. For heterogeneous environments
multiple probes are instantiated. For each probe a translation
component (Trans) exists that knows how to convert from
change events into model transformations, i.e., a graph delta
(∆). Depending on the information richness of the events,
further information may need to be retrieved from either the
probe or queried from the existing model.
The Model component contains the graph model of the

virtualized infrastructure as introduced in §2.1. By obtain-
ing graph deltas (∆) from the Trans component, the model
is updated in accordance to the change event. A graph
delta contains the nodes and edges that should be added
or removed, as well as attribute changes for nodes. As a
pre-processor for the analysis, the Info Flow component
determines the information flow implications in the infras-
tructure and updates the graph model with information flow
edges. In a differential analysis, the information flow is up-
dated based on the graph delta. The Analysis component
analyses the infrastructure given as the graph model with re-
gard to a security policy, which expresses desired or undesired
properties of the infrastructure topology or configuration.

3.1 Obtaining Infrastructure Change Events
We follow a similar architecture as presented in [3] where a

set of probes extracts the configuration of different virtualized
systems. Instead of periodically extracting the entire config-
uration, we extend and improve the existing approach with
probes that obtain events of changes in the infrastructure.
The format and level of information of change events can

largely vary between different virtualization technologies. For
example, VMware and Xen provide rich events on changes
in their inventories, Libvirt provides change events on a
VM level, and OpenStack as a management platform only
provides coarse-grained events. In our design, we cater for
the variety of formats and information richness of events
among different virtualization technologies. In this paper,
we focus on the VMware event probe.

3.1.1 VMware Probe
VMware maintains an internal relational inventory of the

virtualized infrastructure that is composed out of Managed
Entities, such as virtual machines or physical hosts. Managed
entities can have properties that describe further configura-
tion aspects of that entity. Each entity can be addressed
using a Managed Object Reference (MOR).
We are using the method WaitForUpdates of the VMware

API [16] to obtain notifications on updates and property
changes for managed entities. This method is part of the

Property Collector component, which also handles retrieval
of properties of entities in the API. The method returns an
UpdateSet object that contains an incremental version num-
ber, which is used in repeated calls to only obtain the latest
changes. Further, the update contains a set of ObjectUpdate
objects with an Object attribute stating the MOR of the
updated object, as well as a Kind attribute to indicate the
kind of update. The update kind can be i) Enter for a new
object, ii) Leave for a removed object, and iii) Modify for
property changes of that object.
Essentially, the updates state which objects have been

added or removed from the inventory, and which have been
modified. For new or modified objects, a set of Property-
Changes describe the property changes of the objects in the
following form. Operation: The type of property change.
It can be i) Add a value to a collection property, ii) Remove a
value from a collection, or iii) Assign a value to the property.
Name: The name of the property that is changed. Value:
Only for Add and Assign, the value that is added or assigned
to the property.
Consider the operation UpdatePortGroup that allows an

administrator to change the virtual networking configuration
for virtual machines, including changes to the network iso-
lation property. In the case that an administrator changes
the VLAN ID associated with a port group PG-1 to a new
value of 123, we obtain the following event from VMware.
[ modify ] HostSystem ( host −159)

a s s i g n : c o n f i g . network . po r tg roup [ " key−vim . hos t .←↩
PortGroup−PG−1"] . spec . v l a n I d <− 123

The event indicates that the host object host-159 has been
modified. In particular, as part of the network configuration
of that host, the property spec.vlanId of the port group PG-1
has been assigned the value 123.

3.2 From Change Events to Model Updates
From a high-level perspective, the Trans component trans-

lates from a change event to a model update in the form of
a graph delta, as illustrated in Figure 2. The translation has
to differentiate between three kind of change events. First,
a new object appeared that may result in new nodes and
edges in the graph model. Second, an object was removed
and the corresponding nodes and edges in the model have to
be removed, too. Finally, an object has been modified, i.e.,
attributes of that object have changed. This may result in
attribute changes of nodes in the model too, but it can also
leads to the creation or deletion of nodes and/or edges in the
model. This categorisation aligns well with the events pro-
duced by the VMware probe since they contain an attribute
indicating the kind of change.
A translation is typically bound to a specific probe and

its produced event format, i.e., a VMware translation knows
how to translate VMware change events. Therefore, we focus
in the following on describing the event translation design
with the concrete example of translating VMware change
events. The translation needs to handle the three different
change events, but also has to deal with the ordering of
events due to their dependencies, and with incomplete new
objects. Therefore, the output of the translation is either
a graph delta, dependency requirements, or a notification
that the translation encountered an incomplete, ignored, or
unsupported object. If an change event consists of multiple
object updates, we merge the produced graph deltas to form
a single graph delta for that change event.



3.2.1 Translation of an Object Update
We explain and propose a set of algorithms for the suc-

cessful translation of an Object Update into a graph delta.
The handling of a failed translation due to cases such as
incomplete objects or dependency ordering will be discussed
in §3.2.3 and §3.2.4 respectively.
We define a graph delta as ∆ = (V +, V −, E+, E−, M),

where we differentiate between creator nodes and edges
(V +, E+), eraser nodes and edges (V −, E−), and a set M of
node attribute modifier in the form of (node, attribute, value).
Creators lead to new elements in the graph, erasers remove
existing elements from the graph, and node attribute modi-
fiers change attributes of existing nodes to new values.

Enter Object: Creating New Nodes and Edges.
We obtain an Enter Object Update for a new object that

has been created in the inventory as well as for all the existing
objects in the inventory during the initial probe connection.
The goal of the translation component is to produce new
nodes and edges for the model based on the update.
The fundamental idea is to employ a recursive algorithm

that starts at a newly created object and traverses through
all its connected neighbour objects. For each object, the
technology-specific parts of the translation creates a corre-
sponding model node and populates its attributes with values
of the object. It further establishes relations to other created
nodes due to the recursion. The output of this algorithm
is a set of newly created model nodes and edges, where the
edges not only connect to new nodes, but also to existing
nodes in the model.
The translation of object updates has to handle two corner

cases: Incomplete objects, where the attributes of an object
have not been populated fully yet, and the ordering of object
updates within the same update set. We will describe the
handling of these cases in §3.2.3 and §3.2.4, respectively.

Leave Object: Deleting Nodes and Edges.
For each object that has been removed from the inventory,

we obtain an Leave Object Update. The update contains the
MOR of the removed object, and we lookup the corresponding
model node identifier and obtain the node by querying the
model component. Since in our model a managed entity
might have resulted in the creation of multiple nodes, we
have to perform a recursive deletion of the dependent nodes
of the removed node.
The recursive deletion works as the following. First, given

an object that was removed from the inventory, we lookup
the corresponding node in the model, and add the node to
the eraser node set. For all the deleted node’s neighbours,
we place the connecting edges in the eraser edge set. Further,
we continue the recursive deletion at the neighbour node if
i) the neighbour’s type is a child type in the hierarchy (cf.
§2.1); and ii) the neighbour node is not a managed entity.

Modify Object: Creating an Entire Graph Delta.
Finally, we consider the case that an object has been

modified. A Modify Object Update consists of a Property
Change and the modified object reference. This property
change indicates the type of change, the attribute that has
changed, and potentially a new value.
Our algorithm consumes such a property change and pro-

duces a graph delta that consists of creator/eraser nodes and

edges, as well as a set of attribute modifier in the form of
(object, attribute, value). The algorithm has a similar struc-
ture as the algorithms for creating or removing objects, and
in fact builds upon them. For each object type, we further
differentiate between the changed attribute, as well as the
operation performed on that attribute. For attribute as-
signments, we construct attribute modifiers that change the
corresponding node’s attribute. For added managed entities
or data objects, we rely on the algorithm that handles Enter
objects. Similarly, we construct erasers for deleted objects
based on the Leave object algorithm.
An example to illustrate a modified object is the creation

of a new virtual device, such as a virtual ethernet adapter,
for a VM. In this case, we have to translate the new vir-
tual device into a new model node, and connect it to the
existing VM node with an edge. Such an event produces
the following creator nodes and edges: V + = {vnic, vport}
and E+ = {(vm, vnic), (vnic, vport), (pg, vport)}, where vm
corresponds to the existing VM, vnic and vport are created,
and the virtual port is connected to the port group pg.

3.2.2 Applying the Model Update
Given a graph delta as produced by our set of algorithms

based on a change event, updating the graph model is ex-
pressed as updating the node and edge sets of a given graph
G = (V, E): V ′ = (V \ V −) ∪ V + and E′ = (E \ E−) ∪ E+.
The updated model graph is G′ = (V ′, E′). For each node
attribute modifier (node, attribute, value) in M we change
the attribute of the node in V ′ with the new value.

3.2.3 Postponing Incomplete Objects
Resolving further information of an object during the

translation may fail when not all relevant attributes have
been set yet. For example in VMware, when a VM is created
its configuration is only later fully populated. In that case,
we are dealing with an incomplete object. We maintain
a set of incomplete objects and monitor updates for these
objects. If an incomplete object receives an update, we try to
handle it as a new object rather than a modified one. If the
translation succeeds, i.e., the object was complete and could
be translated, we remove the object from the incomplete
set. Otherwise, it remains in the incomplete object set.
In practice and during our evaluation, incomplete objects
always received modify events when further attributes were
populated, usually within a sub-second time span. We may
also employ periodic translation attempts for incomplete
objects, in case they receive no further modify events.

3.2.4 Ordering of Updates based on Dependencies
We are dealing with an asynchronous system and we have

to take care about the ordering of the change events. However,
two aspects of the VMware probe supports the ordering of
events. First, the probe connects over TCP which provides
packet ordering for us. Second, VMware employs version
numbers for the event discovery, which provides an ordering
of events between different versions. However, within one
UpdateSet, we may encounter a wrong ordering of changes.
We can order the changes by using a dependency graph, i.e., a
directed acyclic graph (DAG) where vertices are changes and
directed edges describe dependencies such that the source
node fulfils the dependency of the target node.
We construct such a dependency graph in the following

way. A successful translation of an event returns a graph



Table 1: Subset of Information Flow Rules Relevant for Portgroup VLAN Isolation.

# Type Flow Node Pair Condition(s) Edge Dependency

1 Simple noflow V Switch⇔ P ortGroup Portgroup’s VLAN ID != 0 Attribute VLAN ID
2 Complex flow P ortGroup⇔ P ortGroup Portgroups’ VLAN IDs equal and Attribute VLAN ID,

their virtual switches connected Connectivity of VSwitches
3 Simple flow Any ⇔ Any None

delta of new or modified nodes. In the case of an unsuc-
cessful translation due to a missing dependency, i.e., a node
was not found in the current model, the translation returns
a requirement in the form of a node type and a predicate
on its attributes. Further, the translation of an event may
return potential nodes, which become available once other
requirements are fulfilled. Based on the translation attempts,
we try to match new or modified nodes with requirements,
and introduce a directed dependency edge from the fulfilling
event to the requirement. Potential nodes may also sat-
isfy requirements, thereby building up a dependency graph.
A topological sort of the dependency graph will yield an
evaluation order.

3.3 Differential Information Flow Analysis
The information flow analysis determines how information

may flow in the virtualized infrastructure by computing an
information flow graph. The graph forms the foundation for
analysing isolation properties in the infrastructure. The anal-
ysis works in two phases: first, it takes the realization model
graph that represents the infrastructure and computes an
overlay directed information flow graph. Second, it computes
for the information flow graph the strongly connected compo-
nents (SCC), i.e., the sets of graph nodes that are mutually
reachable, and constructs a reachability graph of the SCCs.
Our analysis is inspired by [3], but has been extended and
improved to be more efficient and operate in a differential
way, i.e., it operates on changes of the realization model
rather than computing the information flow from scratch
after each change. In order to compute the SCCs, we employ
Tarjan’s algorithm [15], but variants also exists that operate
in a differential way [12].

3.3.1 Specifying Flow and Trust Assumptions
The core of the information flow analysis is a set of traversal

rules that specify which elements in the infrastructure are
trusted and provide isolation, and which elements constitute
to information flows. For example in VMware, port groups
provide isolation if they have been configured with a VLAN
ID different than zero. The traversal rules for this example
are listed in Table 1. A first-matching application of traversal
rules results in new information flow edges, which either
describe a flow or noflow (isolation) between a pair of nodes.
Further, an information flow edge can be dependent on a
specific node’s attribute, the connectivity of nodes, as well
as a combination of both. We differentiate between simple
rules, which determine flows between an adjacent pair of
nodes, and complex rules, which work on a pair of nodes
that are not necessarily adjacent, but that fulfil a common
condition such as equality of an attribute.
In our example, a simple rule introduces a noflow edge

between a virtual switch and a adjacent port group in case
the VLAN ID is not zero. The edge is attribute-dependent
on the port group’s VLAN ID attribute. Further, a complex
rule introduces flow edges between non-adjacent port groups

SCC1

SCC2NetworkVSwitch1 VSwitch2

PortGroup1
vlanId=123

PortGroup2
vlanId=123

flow flow

noflow
AttrDep(PG1.vlanId != 0)

noflow
AttrDep(PG2.vlanId != 0)

flow
ConnDep(VS1, VS2, SCC2),

AttrDep(PG1.vlanId == PG2.vlanId)

Figure 3: Graph model annotated with dashed
information flow edges of different kinds (simple,
attribute-dependent, connectivity dependent).

of the same VLAN ID (attribute dependency) if the vir-
tual switches of the port groups are connected (connectivity
dependency). A default rule introduces flow between any
node pair that has not been covered by a previous traversal
rule. Figure 3 illustrates the resulting topology graph that is
annotated with information flow edges, as well as grouping
nodes into SCCs, i.e., SCC1 and SCC2. In the case of the
connectivity-dependent flow edge between the port groups,
we see that the virtual switches are recorded as connectivity
endpoints and SCC2 is part of the connectivity path.

3.3.2 Maintaining an Information Flow Graph
The challenge we solve is to maintain an information flow

graph, which is build from simple as well as attribute and/or
connectivity-dependent information flow edges, even when
connectivity or attributes change. Our differential analysis
works in two phases: 1) Given a graph delta (cf. §3.2.1),
we compute the insertion and deletion of nodes and edges
from the information flow graph by identifying affected graph
elements and selectively apply traversal rules; 2) Based on
the previous insertion and deletion of information flow edges
we compute the reachability graph of strongly connected
components. In case of changes in the connectivity, we also
introduce or remove connectivity-dependent edges.

Processing Realization Model Graph Deltas.
In the first phase we process the realization model graph

delta, and for each of the following elements of the graph
delta compute information flow graph changes.
Creator Nodes: We insert the new nodes in the informa-

tion flow graph. For each new node, evaluate the complex
traversal rules, which may create new information flow edges,
and insert the created edges in the information flow graph.
Creator Edges: We evaluate the simple rules for each node

pair of the new edges and insert the resulting information
flow edges in the graph.
Eraser Nodes: We remove the nodes as well as all their

incoming and outgoing edges from the information flow graph.
Further, we find all connectivity-dependent edges that require
connectivity of a removed node, and remove those edges too.
For example if VSwitch is removed from Fig. 3, the edges to



PortGroup1 and Network are removed. Additionally, the edge
between the port groups is removed, because it is dependent
on the connectivity of the vswitches.
Eraser Edges: For each undirected removed realization

model edge, we find the directed information flow edges and
remove them from the information flow graph.
Node Attribute Changes: Finally, we find all affected

attribute-dependent edges and remove them if their attribute
condition does not hold anymore. The simple rules are re-
evaluated for the invalid edges and the complex rules are
evaluated for the changed nodes. The resulting information
flow edges are inserted in the graph. For example, if Port-
Group1’s VLAN ID changes to zero, the edges between the
vswitch as well as the other port group are removed, but a
new flow edge is introduced between the vswitch.

Processing Connectivity Changes.
In the second phase of our analysis, we compute a new

SCC reachability graph when information flow edges have
been inserted or deleted in the first phase. We detect changes
in connectivity by comparing the previous with the new SCC
reachability graph. In particular, we operate on new and
removed SCCs as well as inter-SCC edges, and either create
or remove connectivity-dependent information flow edges.
Removed SCCs or inter-SCC edges: In the case of reduced

connectivity, we find all connectivity edges that contain a re-
moved SCC or removed inter-SCC edge in their connectivity
path, and remove such edges. For example, if the Network
node is removed from the example of Fig. 3, SCC2 splits into
two new SCCs, i.e., SCC2 is removed and two new SCCs
are added. In the example, the connectivity-dependent edge
between the port groups is affected and removed, because
SCC2 appears in its connectivity path. Since another connec-
tivity path could exists for the connectivity endpoints, we
re-evaluate the complex rules for the removed edges’ node
pairs. In the example no other connectivity path exists.
New SCCs or inter-SCC edges: In the case of increased

connectivity, we re-evaluate connectivity candidates, i.e.,
information flow edges that previously have been missing
connectivity, if they are affected by the new SCCs or new
inter-SCC edges. If their connectivity is now fulfilled, we
add them to the information flow graph.

3.4 Specification of Security Policies and
Detection of Policy Violations

For the detection of security failures, we define the follow-
ing security policies, in the form of attack states, with their
graphical representation shown in Figure 4. Cloud Radar
tries to match the policies on the dynamic realization model
and information flow graph. Once a policy’s attack state
matches, we have found a security failure. A set of security
administrators is notified about a security violation, in order
to mitigate the problem.

zb : zoneza : zone
za.name != zb.name

vm vmflow+

contains contains

(a) Network Isolation

zb : zoneza : zone
za.name != zb.name

host vm

containscontains

real

(b) VM Placement

Figure 4: Graphical Representation of Network and
Compute Security Policies.

Network Isolation: Virtual machines are grouped into “se-
curity zones”, e.g., production and test zone, and these
zones must be isolated on the network level, e.g., through
different virtual networks. This policy is violated if we find
a potential connection (flow+) between two VMs of different
security zones (za and zb).
VM Placement: A group of virtual machines should run
on one or multiple designated physical hosts, e.g., for per-
formance, availability, or also data privacy reasons. This
policy is violated if a VM runs on a different host than the
ones designated. Preventing VM co-location, e.g., due to
side-channel attacks [11], is a variant of this policy.
Storage Isolation: VMs of different security zones must
not be able to exchange information over a shared storage
device, e.g., by using the same file as backing of the VMs’
virtual disks.

We have two implementations to find a policy violation
by matching the policy’s attack state against the current
realization model and information flow graph. The first
one is a native implementation in Java/Scala that iterates
through the nodes in the model graph. It benefits from a
fast execution time and uses the SCC reachability graph to
efficiently determine if two model nodes are connected. Either
the two nodes are in the same SCC or there exists a path
between their corresponding SCCs in the reachability graph.
Otherwise, they are not connected. However, implementing
new policies requires a native implementation, which makes
it less extensible by end-users, such as a cloud administrator.
The second implementation uses a general-purpose graph

matching tool called Groove [6], which tries to match a
given sub-graph in a larger graph. In fact the policies in Fig. 4
are valid sub-graphs that Groove can match against our
realization model graph. The main benefit of this approach is
its extensibility, since end-users can implement new policies in
a graphical and intuitive way. However, as a general purpose
tool it bears a higher execution overhead and for determining
connectivity it uses an equivalent but less efficient path-
finding algorithm, compared to the SCC approach.

4. PERFORMANCE EVALUATION
In this section we empirically evaluate and discuss the

performance of Cloud Radar in the case-study of a semi-
production environment as well as in simulated environments
of different sizes. The performance evaluation focuses on the
processes of building and maintaining the models in sync
with changes in the infrastructure.

4.1 Methodology and Environments
Our evaluation is performed with different environments:

a real, semi-production environment (R150) with 2 hosts
and 150 VMs, and a simulated environment that uses an
infrastructure simulator incorporated in the VMware manage-
ment hosts. We vary the size of the simulated environment
(S#V Ms) between 150 and 30,000 VMs with a host-VM ratio
of 1 : 50. This allows us to evaluate the scalability of our
approach. Cloud Radar itself runs in a Linux VM with 12
vCPUs, 12 GB RAM, and Java 1.7.

We differentiate between the two approaches of obtaining
and maintaining the model of a virtualized infrastructure:
Static Snapshot is the existing approach that always extracts
the full configuration. In order to deal with a dynamic and
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Figure 5: Runtime measurements (in seconds, log scale) of the existing approach “Static Snapshot” and
the new Cloud Radar approach (“Init” for initialisation and “Event” for change events) for the four system
components in relation to the infrastructure size (number of VMs).

constantly changing infrastructure, the extraction has to
be executed periodically. On the other hand, Cloud Radar
obtains an initial event containing the full configuration
of the infrastructure, followed by events for infrastructure
changes. In order to compare the performance of the two
different modes, we measure the runtime of the Probe, the
time needed to translate the Probe output into a model
(sub)-graph, to initialise or update the graph model, as well
as to construct or maintain the info flow graph. For the new
event-based approach, we measure these aspects for both
the initial event and subsequent change events. In order to
trigger change events, we automatically perform a variety of
operations on the virtualized infrastructure. In the particular
measurement of Fig. 5 we used the CreateVM operation.

4.2 Results and Discussion
Figure 5 illustrates the main results of our performance

evaluation with the runtime in seconds on the logarithmic
y-axis, and the different environments and sizes in terms of
number of VMs on the x-axis. We break down the results
into measurements for the four system components. The
measurements for the existing approach are shown as the
Static Snapshot bars, and the new approach is broken down
into measurements for initialisation (Cloud Radar: Init) and
events (Cloud Radar: Event). Our measurement resolution
is 1ms and measurements such as the runtime of the probe
for events is equal or below that resolution.
How does the new event-based approach compare to the

existing full extraction approach? How does the system scale
with the size of the virtualized infrastructure?
First of all, comparing the results of the 150 VM sized realis-

tic (R150) and simulated (S150) environments show equivalent
results, which indicates that the infrastructure simulator in
fact behaves accurately and provides a suitable environment
for performing our measurements. Of course, in a realistic
environment our absolute measurements could differ, but the
scalability of the system would remain equivalent.
Probe: We observe that both approaches initially scale

linearly, although the runtime of the existing approach is
lower compared to the initialisation phase of our new one.
We suspect this behaviour to be rooted in the more complex
construction of the probe output. The existing approach
traverses the VMware inventory and obtains a list of all the
managed entities. In contrary, the new approach sets up a fil-
ter and VMware is required to find all entities that match the
filter and have not been reported previously. However, after
the costly initialisation, the probe reports events instantly
and below our measurement resolution of 1ms, independently
of the infrastructure size.

Trans: This is the dominating factor in the initialisation of
the model, in particular for large-scale infrastructures. Both
the existing approach as well as our new approach perform
almost identical for initialising the model, and scale linearly
with the size of the infrastructure. This is unsurprisingly,
as both the existing approach as well as the new approach
with Enter events perform a similar translation of creating
new objects. The significant performance improvements
lies in translating change events into updates of the model
with our new approach. To highlight this, consider the
S30,000 environment with 30,000 VMs: After the comparable
initialisation time by both approaches, the existing approach
would require a periodic translation of the entire environment
taking 56 minutes, whereas in the new approach each change
event can be translated in 176 milliseconds (the worst-case we
measured for our set of operations). This is an improvement
of four orders of magnitude.
Model: Both the model initialisation of the existing ap-

proach as well as the model update based on events are
almost instantly. In the first case, a new full model is con-
structed all the time and can override the existing one, i.e.,
a simple reference assignment. In the latter case for the
operations we tested, the graph delta remains small and is
merged into the existing graph model. For the initial large
event in our new approach, we have to merge a set of graph
deltas together, where the size depends on the infrastructure
size, resulting in a linear scalability. This also indicates the
worst-case scenario, in case an operation results in an event
that changes the entire infrastructure.
Info Flow: If we break down the information flow analysis

(cf. Table 2), we observe for the full analysis a linear scalable
evaluation of simple traversal rules and SCC computation.
We also see a quadratic complexity for evaluating the complex
traversal rule, which needs to evaluate pairs of port groups in
our example rule set (cf. Table 1). The differential approach
provides significant improvements with a rules evaluation
that only depends on the size of the event and a linear SCC
computation, for which we see even further potential for
optimisation.
Analysis: We measured a runtime of 19ms for finding

violations of the network isolation policy in the real envi-
ronment. This includes finding all violations of the policy,
although one could terminate after the first violation. The
VMware infrastructure simulator does not support operations
that trigger such policy violation, therefore our performance
measurement is limited to the real environment.
In summary and in the light of the more expensive ini-

tialisation of the new approach, when does it actually pay
off? Consider the 10,000 VM environment S10,000 and the



Table 2: Breakdown of Info Flow Runtime (in ms)
into Simple/Complex Traversal Rule and SCC Com-
putation for Static- and Event-based Approaches.

Simple Complex SCC
Static Event Static Event Static Event

R150 153 4 151 1 153 48
S150 157 4 90 2 139 52

S1,000 269 4 592 2 465 138
S10,000 755 6 31,172 2 2,776 1,095
S30,000 1,681 4 926,708 2 11,346 4,769

cumulative runtimes of both approaches. The initialisation
in the existing approach overall takes 693s± 14 and for the
new approach 819s ± 20. While follow up model updates
require a full periodic execution of the entire workflow in the
existing approach, the new one only requires 1.8s for each
change event. Although the new approach is slightly more
expensive in the initialisation, even after two event it pays
off due to the much more efficient event processing.
How many events can be processed per second until we

run into a backlog? Considering the simulated 10,000 VM
environment (S10,000), we can observe and translate approx-
imately 33 VM creation operations per minute, bounded
by the dominating translation time of 1.8s per CreateVM
operation and assuming a serialised processing.

5. SECURITY EVALUATION
We evaluate the security of Cloud Radar in two ways.

First, a security analysis argues that all change events are
received with integrity, in face of the given adversary model.
Further, we discuss various approaches how our system can
be deployed securely in practice. Second, we test the system’s
ability to detect policy violations for compute, network, and
storage resources using randomised operations.

5.1 Security Analysis
The security analysis considers the management host cre-

ating events and the CR host as separate entities and consid-
ers multiple attack vectors including manipulating network
communication through VLAN re-configuration or denial of
service or dropping communication sessions in the Session
Manager. We propose a practical deployment of Cloud Radar
that is secure in the face of an insider adversary, based on a
small set of assumptions and a deployment pattern, which in-
cludes isolation of the reporting network, a heartbeat signal,
and mandatory access control for regular administrators.

5.1.1 Assumptions and Deployment Pattern
The threat model of §2 already introduces that software

attacks are out of scope, which includes that the management
host software cannot be manipulated by the adversary. Our
analysis is built on the following explicit assumptions, which
form the backdrop of the deployment pattern.

[secchan] TLS offers a secure channel providing channel con-
fidentiality and integrity, with server authentication based
on a dedicated PKI. The adversary does not have capabil-
ities to establish host certificates in the certificate tree of
the root CA CAsec trusted by CR.
[access] The adversary accesses the virtualized infrastructure
through the management interface only. This implies that
the adversary does neither have physical or root access
on the physical hosts, direct access to the hypervisor nor

physical access to network and storage. The adversary does
not have access as super_admin.
The assumption [access] is motivated by vSphere Security [17]
best practice, which states that hypervisor hosts should only
be managed through the central management host. This
can also be enforced by putting the hypervisor into lockdown
mode, by which no other users than vpxuser, the vCenter
management user, have authentication privileges nor can
perform operations on the host directly.
Network Isolation: We need to establish the condition

[netisolation] that the reporting network (between the man-
agement host and Cloud Radar) is isolated from the networks
accessible by the adversary to protect the event channel from
interference. A dedicated reporting network netsec is created
for the event reporting between management host and Cloud
Radar . The network isolation is enforced 1) as dedicated
physical networks (building upon the assumption [access]),
2) with a VLAN in the physical switch, where hypervisor
or virtualization administrators do not have privileges, or 3)
as a virtual network with a dedicated VLAN ID, where the
administrators do not have privileges to change the VLAN
configuration. The event channel is established as a secure
channel ([secchan]) to the management host via netsec.
Heartbeat Signal: The condition [heartbeat] models the

realisation of a heartbeat signal sent in time intervals thb.
A heartbeat can be realised by 1) opening the CR probe
filter to background noise events, such as machine utilisation,
including them into the event stream, 2) a periodic task
changing managed entities scheduled by the super_admin, or
3) CR exercising write access on the managed entities, e.g.,
VMs, to obtain change events directly. It is necessary that the
heartbeat signal will be in the event channel observed by the
CR probe. Whereas the first approach is least invasive and
does not require write privileges, it may yield false positives.
The two other approaches give a reliable heartbeat signal,
yet require partial write access, either under control of the
super_admin or Cloud Radar itself.
Mandatory Access Control: The super_admin sets

privileges such that regular administrators only gain privi-
leges on the management host, but not on the hypervisors
according to [access]. The following privileges are set on the
management host: 1) No administrator has rights to revoke
a lockdown mode of a host. 2) No administrator has rights
to manipulate netsec. 3) The administrator privileges for
session manipulation on Sessions are restricted, in particular
Sessions.TerminateSession is controlled.

5.1.2 Security Argument
The foundation of Cloud Radar (CR) to detect security

failures is the ability of obtaining all change events of the
infrastructure in an unmodified form. Therefore, we establish
the requirements integrity and availability, and argue that
our secure deployment of CR fulfils these requirements.

Integrity.
For any n-th event en received at CR holds that the event

is correct, fresh, in order and as it has been sent by the
management host.
According to §3.1.1, if CR requests version n, the man-

agement host is guaranteed to produce an event en, which
contains all changes after en−1 up to reception of the request
for version number n. Thereby, the event chain is complete.
We obtain the order and weak freshness properties from the



version number, as an event en must have been generated
after any event e<n.
The event en is received at CR over a secure channel ac-

cording to condition [netisolation]. The channel is established
over the dedicated network netsec and server-authenticated on
cert that is in the certificate chain of trusted CAsec, which is
inaccessible to the adversary according to [secchan]. Thereby,
the connection is with the correct management host. Further,
based on the secure channel of [secchan], we obtain channel
confidentiality and integrity on the event en, which is thereby
as sent by the management host. As the adversary can nei-
ther interfere with the management host event reporting by
the exclusion of software attacks nor with the network con-
figuration for netsec, the event en is the correct event sent as
intended by the management host. From [access], we obtain
that the adversary could not have changed the event at the
management host or any subordinate host.

Weak Availability.
Either all events sent by the management host are received

by CR eventually and latest within a channel timeout ttimeout
or an alarm is raised after ttimeout is elapsed.
The network netsec is modelled as an asynchronous channel,

through which messages arrive eventually, the secure channel
is established over it by CR. Observe that even though un-
derlying TCP/IP offers reliable, ordered and error-corrected
communication, it does not give strong timeliness guarantees.
Whereas the secure channel enforces integrity and ordering,
it does not offer availability. Because of the in-order delivery
of netsec, it follows that if en is received, then all previous
events e<n must have been received already, yielding that, if
the channel is intact, all events sent by the management host
are received by CR eventually and latest within a set time-
out ttimeout. The condition [netisolation] isolates the network
netsec from interference by the adversary on the network,
while [access] prevents interference on the subordinate hosts,
however this does not rule out availability failures from other
root sources, e.g., a cable fault.
The Weak Availability clause, i.e., an alarm is raised after

ttimeout is elapsed, is obtained from the condition [heartbeat].
If the channel waits for a packet or the channel is interrupted,
then we have that eventually ttimeout will be reached without
a packet having arrived at CR. According to [heartbeat], the
management host produces a heartbeat signal after each
time window thb < ttimeout. Therefore, we have that the after
ttimeout without a message, CR can conclude that the channel
is interrupted and raise an alarm. It follows that availability
failures are detected within ttimeout. The system will try to
reestablish the connection after an interrupt.

5.2 Security Testing
For each policy (cf. §3.4) we determine the operation that

may cause a policy violation if used with a specific param-
eter. We execute these operations several hundred times
with a parameter from a known set of violating parameters
or a random parameter, similar to Fuzzing from software
security testing. Cloud Radar is required to detect a policy
violation in the case of a parameter from the violating set,
and otherwise no violation should be detected.
In the case of network isolation, a critical operation is

UpdatePortGroup that changes the VLAN identifier of a port
group to a given one. If the new VLAN identifier is conflicting
with an existing identifier of a different tenant or security

zone, the policy is violated. A violating VLAN identifier was
chosen with a probability of 1/3. For VM placement, the
critical operation is CreateVM that creates a new VM on a
given host. The policy is violated if the given host is not part
of the same placement zone as the new VM. Finally, storage
isolation is violated if a VM is reconfigured (ReconfigVM)
with a virtual disk that uses as backend a file already in use
by another VM of a different zone.
The security testing uses the real environment described

in §4.1, because the simulated one does not support all
management operations and its networking configuration
is not suited for the network isolation policy. This is not
problematic as analysis performance and scalability are not
a concern in this security testing, and a real environment
yields more realistic behaviour as a simulated environment.
For the network isolation policy, Cloud Radar in fact de-

tected all expected violating operations as policy violations,
and operations with random operations as non-violations.
Overall we issued 254 violating operations and 746 non-
violating ones. For the VM placement policy, the system
exhibits correct behaviour by detecting 491 violating VM
creation operations and reported no violations for 509 non-
critical operations. Finally, 505 operations out of 777 VM
storage operations have been correctly identified as violations,
and for the others the tool correctly reported no violations.

6. RELATED WORK
Configuration Changes in Networks: Misconfigura-

tions in networks have been a problem in the operation of
IT environments for a long time and solutions to mitigate
such misconfiguration by the means of change monitoring
and analysis have been proposed. Mahajan et al. [10] studied
misconfigurations in BGP routing configuration changes by
listening to changes and assess these. Kim et al. [9] anal-
ysed the evolution of network configurations by mining a
repository of network configuration files. With the rise of
software-defined networking, real-time monitoring and policy
checking have been achieved in these environments [7, 8]. In
virtualized infrastructures, misconfiguration may not only
happen to the network configuration, but span the entire
field of compute, network, and storage resources, which we
tackle with Cloud Radar .
Security of Static Virtualized Infrastructures: The

modelling and security analysis of static virtualized infras-
tructures have been subject of existing works [2, 3]. However,
these efforts lack the ability to handle dynamic behaviour of
such environments. With Cloud Radar we are closing this
gap by introducing the continuous monitoring of dynamic
infrastructures and maintaining an up-to-date model. In fact,
our performance evaluation showed significant performance
improvements compared to the existing approach.
Monitoring of Dynamic Virtualized Infrastructures:

Closest to our work is vQuery [14] which monitors config-
uration changes in VMware environments and assess these
changes with regard to performance implications. The dif-
ferent goals and motivations of vQuery and Cloud Radar
(performance versus security) are reflected in the model and
configuration translation, where vQuery models many per-
formance metrics and Cloud Radar focuses on capturing the
topology and its security. Schiffman et al. [13] proposed
a monitoring system called Cloud Verifier that allows to
monitor hosts and virtual machines with regard to integrity
requirements, e.g., based on trusted computing mechanisms.



Cloud Radar on the other hand focuses on topological proper-
ties of the virtualized infrastructure and allows a wide variety
of infrastructure security policies to be analysed.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented Cloud Radar , a system that

detects security failures in virtualized infrastructures in near
real-time. The system monitors virtualized infrastructures for
changes and based on these changes maintains a graph model
of the infrastructure. The model is the input to a model-
based security analysis on the infrastructure’s topology. The
analysis computes and maintains an information flow graph
for the dynamic infrastructure, in order to determine isola-
tion properties, and tries find violations of specified security
policies. We implemented a prototype of Cloud Radar for
VMware environments and our performance evaluation shows
a significant performance improvement of our event-based
approach compared to an existing one that uses static con-
figuration snapshots. The snapshot approach requires 693s
in a 10,000 VM simulated infrastructure for extracting the
configuration and building the models, whereas our event-
based one only requires 1.8s for each change event after an
initialisation of 819s.
As future work, we aim for further optimisations of the

differential information flow analysis by implementing a dy-
namic SCC computation algorithm. We perceive interesting
opportunities along the lines of correlating events with oper-
ations and the historical analysis over the evolution of the
model. Further, we also plan to extend the model to cope
with dynamic access control configurations.
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