
A Virtualization Assurance Language for Isolation and Deployment

Sören Bleikertz Thomas Groß
IBM Research - Zurich

{sbl,tgr}@zurich.ibm.com

Abstract—Cloud computing and virtualized infrastructures
are often accompanied by complex configurations and topolo-
gies. Dynamic scaling, rapid virtual machine deployment, and
open multi-tenant architectures create an environment, in
which local misconfiguration can create subtle security risks
for the entire infrastructure. This situation calls for automated
deployment as well as analysis mechanisms, which in turn
require a cloud assurance policy language to express security
goals for such environments. Where possible, configuration
changes should be statically checked against the policy prior
to implementation on the infrastructure.

We study security requirements of virtualized infrastruc-
tures and propose a practical tool-independent policy language
for security assurance. Our policy proposal has a formal
foundation, and still allows for efficient specification of a
variety of security goals, such as isolation. In addition, we
offer language provisions to compare a desired state against
an actual state, discovered in the configuration, and thus allow
for a differential analysis. The language is well-suited for
automated deduction, be it by model checking or theorem
proving.

I. INTRODUCTION

Cloud and large-scale virtualized infrastructures give rise
to complex configurations. This complexity is a side-effect
of highly dynamic scaling, rapid machine deployment and
open multi-tenant systems. The complexity renders clouds
challenging to administrate with respect to achieving all
security requirements. This holds for cloud providers as well
as their subscribers. The side effects of configuration changes
to high-level security goals, such as isolation of tenants, are
non-trivial at best. This is particularly true when performing
local low-level configuration changes.

Indeed, research has established that configuration prob-
lems in complex environments are likely to result in security
problems. A study of problems in large-scale Internet services
by Oppenheimer et al. [18] highlights configuration problems
as the major source of security issues. We conjecture
that these results also apply to virtualized infrastructures
and clouds, because these infrastructures are large-scale,
interconnected, heterogeneous systems, as well. In addition,
studies by Berger et al. [7] point out a complexity increase
introduced by the virtualization of the infrastructure.

Given the impact of configuration problems on large-scale
infrastructures, we suggest that global high-level security
properties must be verified complementary to local low-level
ones. This is because local security properties do not compose
gracefully to fulfill goals for the entire topology. Let us

exemplify this rationale in the case of isolation for a multi-
tenant virtualized infrastructure. Even if an administrator
configures all resources well with regard to local policy
decisions, such as firewall policies for virtual machines or
access control policies for virtual storage, there still may be
information flow through the connections of the topology,
be it by covert channels between virtual machines on the
same hypervisor, inter-zone VLAN traffic, or shared physical
storage areas.

The complexity of cloud configuration with respect to
assuring high-level security goals is tantalizing. It calls
either for infrastructure-wide access control and deployment
mechanisms to enforce the security goals automatically or for
verification mechanisms to check for breaches of the goals.
In any case, we need a specification language for high-level
assurance goals. Such a language plays a different role in
the three cases mentioned: First in the access enforcement
case, the security assurance language is an auxiliary input to
the policy decision engine that has in turn the function to
ensure that the high-level assurance goals are preserved by
access requests. Second in the automated deployment case,
the deployment mechanism establishes deployment patterns
that maintain the high-level security goals. Best practices
and deployment templates that incorporate some security
targets are insufficient to fulfill high-level security goals for
the entire topology, because a series of local configuration
transitions, which fulfill a local-view security property, may
still breach a topology-level security goal in a global view.
Third in the verification case, the high-level security goals
constitute the verification target, against which the actual
infrastructure is evaluated.

There already exist specification languages for virtualized
environments. These languages aim at provisioning (cf. [10],
[15]), or network and reachability properties, e.g., firewall
topology or distributed network access control [9]. In the
former case, the specification languages are restricted to
single resources, notably virtual machines, however do not
have provisions for statements over the topology. In the
latter case, the languages have provisions to model the
topology and properties thereof, however they do not provide
language primitives for expressing diverse security statements
as needed in virtualized infrastructures.

We derived the following three categories of interesting
security statements for virtualized infrastructures from ex-
isting research literature such as [7], [18], [20]: operational

{sbl,tgr}@zurich.ibm.com

correctness, failure resilience, and isolation. First, operational
correctness ensures that services are correctly deployed
and that their dependencies are reachable. Second, failure
resilience ensures that the effects of single component failures
cannot cascade and affect many entities. Third, isolation
ensures that different security zones are properly separated
and that traffic between security zones is only routed through
trusted guardians.

The goal of this paper is to study such high-level security
properties of virtualized infrastructures and propose a policy
language to express these as goals. We call the resulting
language Virtualization Assurance Language for Isolation
and Deployment (VALID).

A. Contribution

We contribute the first formal security assurance language
for virtualized infrastructure topologies. More precisely, we
model such an assurance language in the tool-independent In-
termediate Format IF [4], which is well suited for automated
reasoning. We lay the language’s formal foundations in a set-
rewriting approach, commonly used in automated analysis of
security protocols, with access to graph analysis functions. In
addition, we propose language primitives for a comparison of
desired and actual states. As a language aiming at expressing
topology-level requirements, it can express management and
security requirements as promoted by [9]. Management re-
quirements in the cloud context are, for instance, provisioning
and de-provisioning of machines or establishing dependencies.
Security requirements are, for instance, sufficient redundancy
or isolation of tenants. To test soundness and expressibility of
our proposal, we model typical high-level security goals for
virtualized infrastructures. We study the areas deployment
correctness, failure resilience, and isolation, and propose
exemplary definitions for respective security requirements in
VALID.

B. Outline

We structure this paper in a top-down way. We first
propose infrastructure-level assurance goals for virtualized
systems in Section II. These goals are a diverse sample of the
language scope. In Section III, we specify our requirements
on the cloud assurance language on a meta-level. We lay
the language’s formal foundations in Section IV, that is, we
introduce its roots in the Intermediate Format IF [4] and our
cloud-specific language primitives and syntax. In Section V,
we propose formal specifications of checkable attack states
for the assurance goals defined in Section II. Thereby, we
exemplify the use of VALID in its application domain. We
briefly discuss a virtualization assurance tool that would
incorporate VALID in Section VI. We compare our cloud
assurance language proposal to other policy language and
virtualization security efforts in Section VII.

II. VIRTUALIZED SYSTEMS SECURITY GOALS

We distilled three categories of virtualized systems security
goals based on common problems described in existing re-
search literature: Operational Correctness, Failure Resilience,
and Isolation. Furthermore, for each of these categories we
identified specific goals that our language should be capable
of capture and express efficiently. Figure 1 depicts a simple
virtualized system example that we will use to illustrate the
different security goals.

Zone A

Zone B

Firewall

HostA HostB

HostC

HypA HypB

HypC

VMA VMB

VMC

VMA’

VPN Link

Figure 1. Virtualized System Example

A. Operational Correctness

Operational correctness describes that a service is both
correctly deployed and reachable. It bears some similarity to
the Liveness property introduced in [1], [14] and informally
states that “good things” will eventually happen for a service.
Configuration mistakes often lead to unavailability of services
in traditional data center environments (cf. [18]) and is only
intensified in virtualized environments due to their increasing
complexity (cf. [7]).

Deployment correctness: means that an entity is de-
ployed in correct operational conditions, which includes
multiple factors: i. The geographic location of the host system
can have legal and technical consequences, e.g., conflicts
with privacy laws, or long end-to-end delay due to geographic
disparity. ii. Properties of the host system such as capabilities
and reliability can have a significant impact on the service.
iii. Furthermore, the configuration of the host system and
service has to be correct that the service can actually be run
on the host.

Reachability: means that an entity is connected to all its
operational dependencies. On one hand, these dependencies
can be network reachability, i.e., the VM and physical host
are actually reachable over the network from the client-
side. On the other hand, these dependencies can be resource
dependencies in general, e.g., that a VM is able to access
services on other nodes. All such dependencies have to be
fulfilled in order that the operational correctness of the service
is given.

B. Failure Resilience

Failures of components in a computing environment are
unavoidable, but a resulting failure of services, which are
visible to the end users, can be mitigated. Such containment
of component failures are pointed out in [18] and can
be summarized as: failure compartmentalization due to
Independent failure, and prevention of cascading failures
and limitation of failure impact due to the Redundancy.

Independent failure: means that failures of an entity
are well-contained and that dependencies of entities with
the same function will fail independent from each other.
This goal nurtures a diversity of the components deployed
in the computing environment. A typical software stack in
a virtualized system consists of a hypervisor, management
operating system, virtual machine system, and the service
application. A diversity in this stack, such as using different
hypervisors from different vendors, will have an isolated
failure in case of faults in one of these hypervisor implemen-
tations. Independent failure can be satisfied in the example
scenario, in case the hypervisors HypA and HypB hosting
the service VMs are provided by different vendors.

Redundancy: means that sufficient replication enforces
that individual component failures will leave overall service
availability unharmed. The necessary level of redundancy
depends on the desired failure resilience for a service, which
also depends on its criticality. Sufficient redundancy implies
the absence of a single point of failure (SPoF). A SPoF exists
in a system, if a dependency of a service is only satisfied
by one entity in the whole system. The absence of such a
SPoF entity will increase the failure resilience due to the
limitation of a cascading failure effect on dependent services.
In our example, the service running in VMA is replicated
in VMA’, both running on different physical machine and
interconnected with two independent network links.

C. Isolation

In virtualized environments, such as public infrastructure
clouds, we see multi-tenancy in order to increase the
utilization of the system. Isolation compares to Safety [1],
[14] that undesired information flow do not happen. In
[20], the problem of undesired information flow in public
infrastructure clouds was exposed.

Isolation of zones: means that specified security zones
are isolated from each other, either by correct association
of machines to zones or by enforcement of flow isolation
between any entity of different zones. A security zone can
be any set of entities in the virtualized environment. For
example, a zone in the case of tenant isolation is the set
of resources used by a tenant, and zone isolation is given
if the tenants do not have access to common resources. In
the illustrated example, we have defined two security zones
Zone A and Zone B that are disjoint, i.e., isolated of each
other.

Guardian mediation: means that information flow
between zones is allowed if, and only if, mediated by a
trusted guardian. In case information flow is allowed between
the two security zones defined in our example case, the
Firewall guardian has to mediate the traffic between the zones.

Other goals regarding isolation are Chinese wall policy
and secure channels.

III. REQUIREMENTS

A. Formal Foundations

Virtualized environments can gain complexity beyond
human oversight and therefore require tool-supported deploy-
ment and analysis. Thus, we expect the security assurance
language to have formal rigor and be suitable for automated
reasoning. This requirement implies a simple, mathematical
structure with controllable state space.

B. Expressibility

There are many different security requirements imposed
on virtualized infrastructures. Therefore, we require that the
security assurance language needs to be able to efficiently
express a wide range of security properties as discussed in
Section II. First, the language needs to have three expression
layers: i. statements about properties of resources, e.g., their
IP address or functional classification, ii. set operations, such
as membership in security zones, iii. graph operations, such
as existence of an information flow or dependency path in a
graph model of the topology. Second, the language needs to
be reflexive and self-contained, that is, one can define new
security goals with the existing terms of the grammar and
without the need of auxiliary grammar.

As a corollary of this requirement, we propose that the
security assurance language shall express attack states, that
is, states in which a security property is violated, as well
as ideal states, that is, states that assure a correct system
behavior. Whereas the first approach is suitable for more
efficient security analysis (model checking) without complete
state exploration, the second approach is suitable for complete
verification (theorem proving).

C. Tool and Standard Independence

Virtualized environments are still a young field without
settled predominant standards. Therefore, we require the
specification language to be independent from a specific
vendor’s tool or a specific standard.

D. Desired State Comparison

The validation of security properties of virtualized en-
vironments provides two different views on the state of
such a virtualized infrastructure: a desired state or the ideal
world, as specified in the policy, and an actual state or
real world, i.e., the current configuration of the virtualized
infrastructure. One specific goal of our assurance language

is to express comparisons of a desired state and an actual
state discovered in a configuration. Sometimes it is necessary
to make statements about ideal elements as well as real
elements in the very same policy statement. Consider the
example that a VM should be hosted on a specific host. Or
in other words, the goal is breached if the VM is hosted
on a different machine than specified. This breach can be
efficiently captured using both elements from the ideal and
real world in one policy statement. We specify that we have
an ideal machine hosting the VM and also a real machine
hosting the same VM. In order to describe the placement
breach, we say that these two machines do not correspond
to each other, i.e., the real machine is not the same as the
ideal one in terms of the given properties. Therefore, if such
a statement holds, we observed a placement breach.

IV. LANGUAGE SYNTAX

We propose a specification and reasoning language for
security properties of virtualized environments based on set-
rewriting and conditions over states.

VALID uses a subset of the AVISPA Intermediate Format
IF [4] as its basis, a meta-language for automated deduction
based on set manipulation and conditions over state expres-
sions. We chose IF as the basis for our work because of its
capability to efficiently express goals as stated in Section II,
its natural extensibility to state transition formulations, its
tool-independence, and its close relation to general-purpose
automated deduction, which is given due to the strong formal
foundation of IF, and its support by model checkers and
theorem provers.

A. Term Algebra and Atomic Terms

We start from atomic terms, that is constants and variables.
The value of a constant is fixed, e.g., the symbol for the
type machine. We call the set of all constant terms signature.
A variable can be matched against any value (of matching
type). Atomic terms with different symbols have different
values.

Definition 1 (Term Algebra). We define a term algebra over
a signature Σ and a variable set V . Constants and variables
are disjoint alphanumeric identifiers: constants start with a
lower-case letter; variables start with an upper-case letter.
We typeset IF elements in sans−serif.

The signature Σ contains a countable number of constant
symbols that represent resource names, numbers and strings.

The atomic terms are typed (see Table I):

Definition 2 (Type System). We have a set of basic types:

T := {node,machine, host, hypervisor,machineOS,
hostOS, network, zone, class}

We write t : τ for a term t having type τ . Variables can
be untyped or typed. If a variable has a basic type, it can
generally only be matched against a constant with matching

Table I
BASIC TYPE CONSTANTS FOR VIRTUALIZED INFRASTRUCTURES.

Type Symbol Description

node denotes the superclass of types in TN.

machine denotes a virtual machine.
hypervisor denotes a hypervisor on a host or VM.
host denotes a physical host.

machineOS denotes an operating system of a virtual machine.
hostOS denotes an operating system of a physical host.

network denotes a network component

zone denotes an isolation zone of an infrastructure.
class denotes a functional class of similar components.

type. The type symbol node represents a super-type: variables
of type node can match against types in the sub-set:

TN := {machine, host, hypervisor,
machineOS, hostOS, network}

To analyze topologies, we model virtualized infrastructure
configurations as graphs. Whereas the basic graph, called
realization, is a unification of vendor-specific elements into
abstract nodes, we introduce further graph transformations
to model information flow and dependencies.

Definition 3 (Graph Types). A graph type G ∈
{real, info, depend} is a constant identifier for a type of
a graph model:

• real denotes a realization graph unification of resources
and connections thereof.

• info denotes a realization graph augmented with color-
ings modeling topology information flow.

• depend denotes a realization graph augmented with
colorings modeling sufficient connections to fulfill a
resource’s dependencies.

B. Function Symbols and Dependent Terms

Definition 4 (Function Symbols). Σ contains a finite set of
fixed function symbols.

• pair(A,B) denotes a pair.
• contains(S,E) denotes a untyped set membership rela-

tionship of a set S and element E.
• matches(I,R) denotes the correspondence between an

element of the ideal world I and the real world R. Both
elements I and R must have the same type.

• edge([G : real];A,B) is a predicate, which denotes the
existence of a single edge between A and B with respect
to an (optional) graph type G.

• connected([G : real];A,B) is a predicate, denotes
existence of a path between A and B, respect to an
(optional) graph type G.

• paths([G : real];A,B) denotes the complete search of
all paths between A and B, with respect to an optional
graph type G. The resulting type of the function is a
set of edge pair sets.

The notation [A : v] denotes an optional argument A with
default constant value v.

Observe that the graph functions allow an optional graph
type argument G (Definition 3), which specifies the graph
type the function is applied to.

We introduce the notion of dependent terms to model
access to resource properties, such as IP address ipadr(M)
or image type imagetype(M) of a machine M .

Definition 5 (Dependent Term Function Symbols). A de-
pendent term is a function symbol denoting the mapping of
constant values to atomic terms. Σ includes a fixed set of
constant symbols for dependent terms.

C. Facts, State and Conditions

VALID aims at reasoning over secure and insecure states
of a cloud topology, which we model as a set of known facts.

Definition 6 (Facts and State). A Fact represents a Boolean
piece of knowledge: it can be either true or false. A state is
a set of ground facts. We express such sets by a dot-operator
(“.”), that is, a commutative, associative, idempotent operator,
which joins all elements of a state.

Conditions restrict state terms with auxiliary predicates:

Definition 7 (Condition). A condition is an inequali-
ties predicate over terms. We define the condition func-
tion symbols for equality equal(Term, Term) and less-or-
equal leq(Term, Term) over terms as well as negation
not(Condition) and conjunction operator & Condition
over conditions with their natural semantics.

D. State Transitions

In general, an IF specification consists of an initial state and
a finite set of transition rules, defining a transition relation.

Definition 8 (Transition Rules). Transition rules have form

PF .NF C =[V]⇒ RF

where
• PF and RF are sets of facts, NF is a set of negated

facts of the form not(f) where f is a fact,
• C is a set of conditions and
• V is a set of variables.

We distinguish the left-hand side (LHS) defining the
preceding state and the right-hand side (RHS) defining the
result state. The variables V are existentially quantified in
the rule to introduce fresh variables during transitions. RF
defines the resulting facts. The variables of RF must be
a subset of the variables of the positive facts PF and the
existentially quantified variables V .1

1Note that this excludes the variables only occurring in negative facts
and conditions.

Note that transition definition does not enforce transition
determinism, that is, that result states are unambiguously
defined from the preceding state. IF, being a formal language
for model checking, focuses on exploring the state space and
determining reachability of attack states, possibly following
multiple routes.

The paper focuses on specification of security goals over
static states and will only specify initial and goal states. We
leave analysis of dynamic systems to future work.

E. Goals

We define goals by specifying an abstract state which
constitutes attaining the goal. For an analysis we pattern-
match a Fact set modeling the goals constrained by a
conditions list against the actual analysis state.

Definition 9 (Goal). A goal state is a set of positive and
negative facts constrained by a (potentially empty) condition
list. It is specified with a unique identifier, an optional graph
type G and a variable list as interface. It has the form:

goal Identifier ([G : real];V ariableList) :=
PF .NF C

where PF and NF are positive and negative fact sets and
C a condition list. The graph type G determines the graph
type of unparametrized graph functions used in the goal.

Example 1 (Goal). Let us consider a simple isolation breach
attack state, which matches against a state, in which disjoint
zones ZA and ZB contain machines MA and MB respectively,
and in which there exists an information flow path between
these two machines. It is determined as information flow goal
by the graph type info. Observe that the goal is defined over
variables and can match against any state with constant zones
and machines fulfilling this relation and that the matching
values must be different.

goal i so la t i on b reach (i n f o ; ZA, ZB,MA,MB) :=
conta ins (ZA,MA) . conta ins (ZB,MB) .

connected (MA,MB)

F. Structured Specifications

Specification of our language consist of distinct sections:
The TypesSection introduces all atomic terms that will
be used throughout the analysis. The type section may
have two subsections for real and ideal type declarations.
The InitsSection specifies initial knowledge on entities. For
instance, here one would specify properties of machines
that can be used for identifying the machine, such as the
machine’s IP address as Condition over machine properties.
Knowledge specified here can be about ideal and real entities.
The RulesSection specifies the knowledge on the structure of
the virtualized infrastructure. For instance, it specifies which
machine elements are associated with which isolation zones.
Note that the topology specified in this section is particularly
important to model the system’s ideal state. Finally, the

GoalsSection defines attack and assurance states which are
matched against analysis results.

G. Dual Type System

We introduce the declaration of ideal and real types, that
is a dual type system.

Definition 10 (Dual Types). For each constant or variable
symbol, we explicitly declare symbol to be either universal
or restricted to the ideal or real model. A declaration in the
top-level of the TypesSection means universal, a declaration
in the subsections idealTypes and realTypes restricts the
declaration to the respective model. The matches(·, ·) fact
denotes that two symbols of ideal and real world have a
correspondence with each other.

V. ATTACK STATE DEFINITION

We model the security goals from Section II as abstract
attack states. In case the state is reached, a tool will alert that
the corresponding goal has been breached. This approach
aims at security analysis by, for instance, model checking.

To facilitate an actual security analysis, one complements
these abstract goals with specifications of the ideal state
of the system in two areas: First, one defines the initial
knowledge on entities (InitsSection), that is, properties
modeled as dependent terms, such as IP address. Second, one
defines the knowledge of the ideal structure of the topology
(RulesSection) as initial state, that is, facts known on contains,
matches or edge relations.

A. Operational Correctness

For the operational correctness from Section II-A, we
model deployment breach as exemplary attack state.

1) Deployment Breach: Deployment breach considers in
how far VMs are placed on an incorrect hypervisor or
physical machine.

Definition 11 (Deployment Breach). A deployment breach
is an attack state over some virtual machine M and two
different hosts (HA, HB), in which edge(HA,M), i.e., M
is hosted on HA, is a specified fact, but edge(HB,M) was
observed.

sec t ion types :
M : machine
subsect ion idealTypes :

HA : host
subsect ion realTypes :

HB : host

sec t ion goals :
goal deploymentBreach (r e a l ; HA,HB,M) :=

not (matches (HA,HB)) . edge (HA,M) . edge (HB,M)

After declaring Fact that HA does not match HB, the left-
side of the statement contains the matched facts of the ideal
world, that is, edge(HA,M), the right side of the statement
the observed fact of the real world edge(HB,M).

2) Unreachability: Unreachability is an attack state that
there does not exist a path between a machine and a
dependent resource in the dependency graph.

Definition 12 (Unreachability). A unreachability is an attack
state over some machine M and a resource set {RA, . . . ,RN},
on which M depends. The attack state is triggered if no
dependency path between M and at least one of the needed
resources RI exists.

B. Failure Resilience

1) Single Point of Failure:

Definition 13 (Single Point of Failure). A single point of
failure is an attack state over any machine M and any two
different resources (RA, RB) with equivalent function. A
single point of failure exists if only path(M,RA) holds, but
not(path(M,RB)) for any RB.

In general, a single point of failure exists if there is only
one dependency path between a resource and its dependencies.
This requires knowledge what the dependencies of a certain
resource (type) are and which other resources can fulfill the
same function. For instance, for a network single point of
failure, one may consider all network switches that connect
to the Internet, independently from the ones connecting to the
Intranet. We therefore define different attack state goals for
different resource types and model the goals with functional
classes of resources fulfilling the same purpose.

sec t ion types :
M : machine
NA, NB : network
C : c lass

sec t ion goals :
goal singlePoF Net (depend ; NA,NB,M,C) :=

conta ins (C,NA) . conta ins (C,NB) . connected (M,NA) .
not (connected (M,NB))

2) Interdependent Failure Behavior:

Definition 14 (Interdependent Failure Behavior). Interdepen-
dent failure behavior is an attack state over two different
machines (MA,MB) with the same functional class C and
k pairs of resource and associated class, i.e., a specific
implementation, such as:

({RA1, . . . ,RAN},CRA), . . . , ({RK1, . . . ,RKN},CRK)

We have an attack if for any two machines (MA, MB) of
class C, there exists a resource of the same class they both
have in their stack.

C. Isolation

1) Zoning & Isolation Breach: We specify a simple
isolation analysis over machines and zones. Machines can be
recognized by their properties, for instance an IP or MAC

address. By the contains rule, we express that a machine is
associated with zone (i.e., that the zone contains the machine).

Definition 15 (Zoning Breach). A zoning breach is an attack
state over a pair of machines (MA, MB) and zones (ZA, ZB),
where either MA is declared to be in ZA and not present,
or MB is declared not to be in ZB, but was found there in
the real state.

sec t ion types :
MA, MB : machine
subsect ion idealTypes :

ZA, ZB : zone
subsect ion realTypes :

ZA0 , ZB0 : zone

sec t ion goals :
goal zoningBreach Missing (i n f o ; ZA, ZA0 ,MA) :=

matches (ZA, ZA0) . conta ins (ZA,MA) .
not (conta ins (ZA0 ,MA))

goal zoningBreach Unknown (i n f o ; ZB, ZB0 ,MB) :=
matches (ZB, ZB0) . not (conta ins (ZB,MB)) .

conta ins (ZB0 ,MB)

Isolation breach is more complex as it incorporates the
existence of information flow paths between zones.

Definition 16 (Isolation Breach). An isolation breach is an
attack state over any pair-wise different variable machines
(MA,MB) and zones (ZA,ZB), MA in ZA and MB in ZB,
in which there exists a path between MA and MB.

sec t ion types :
MA, MB : machine
ZA, ZB : zone

sec t ion goals :
goal i so la t i onBreach (i n f o ; ZA, ZB,MA,MB) :=

conta ins (ZA,MA) . conta ins (ZB,MB) .
connected (MA,MB)

2) Guardian Circumvention: Guardian Circumvention is
an attack state corresponding to Guardian Mediation from
Section II. It means that there exist paths between machines
that are not controlled by a trusted guardian.

Definition 17 (Guardian Circumvention). Guardian circum-
vention is an attack state over any pair-wise different variable
machines (MA,MB), guardian G and zones (ZA,ZB), MA
in ZA and MB in ZB, in which there exists a path between
MA and MB, which does not contain the guardian G. The
attack state naturally extends to a set of multiple guardians.

VI. VIRTUALIZATION ASSURANCE TOOL

We report that we have implemented a virtualized systems
assurance tool, which is able to discover heterogeneous
virtualized infrastructures, such as ones based on Xen and
VMware, and build up a unified graph representation thereof.
The tool provides mechanisms for graph operations and
information flow analysis. VALID needs to be integrated
into such a tool for diagnosis purposes, that is, matching the
security goals against the currently deployed system. We built

a parser for our language grammar using ANTLR2, a Java
parser generator. We aim at integrating the parser as well as
VALID-specific analysis capabilities into the assurance tool
as future work. To project a VALID policy onto native IF as
well as use it with an existing IF tool, our assurance tool has
to resolve graph function symbols (edge, connected, paths)
into the set of all valid graph assignments. In addition, the
tool needs to translate knowledge about the discovered real
state into policy statements about real entity properties and
topology.

VII. RELATED WORK

Automated network infrastructure analysis: Narain et
al. [17] analyze network infrastructures with regard to single
point of failure using a formal modeling language. In contrast,
our approach focuses on providing a generic language to
express a variety of high-level security goals, among them
the absence of single point of failure. Previous work has
also analyzed network reachability in an automated way, for
example, [22] for IP networks, [13] for VLANs, and [8] for
cloud configurations. In terms of network manageability and
configuration management, Ballani and Francis [5] propose
a deployment language that overcomes the complexity of
the low-level configuration. It allows the specification of
high-level configuration goals to improve the manageability
and was applied to network tunnels. Narain [16] proposes
modeling a network configuration using a formal language
and do automated reasoning on this formal model.

Formal languages for security policies and modeling:
Ponder [9] is an object-oriented formal specification language
for access control policies and role management in distributed
systems. However, it does not aim at expressing high-level
security goals for virtualized infrastructure topologies. Kagal
et al. [12] present a policy language for pervasive computing,
which is similar to cloud computing environments with regard
to their dynamic behavior. It is to express entitlements on
actions, services, or conversations of an entity, such as an
agent or user. Their implementation is based on Prolog.
Alloy [11] is a first-order logic modeling language, which is
used, among other things, in network infrastructure modeling
and analysis [16], [17]. Alloy can express structural properties
as relations between objects as well as temporal aspects as
dynamic models with states and allowed transitions. It has
potential as suitable basis for our cloud assurance language,
however we opted for IF as basis because of two reasons.
First, IF has a strong formal foundation. Second, IF is
supported by model checkers and theorem provers, such
as AVISPA [2], SATMC [3], and OFMC [6] in combination
with a fix-point evaluation exportable to Isabelle [19].

Virtualized systems specification languages: The Open
Virtualization Format (OVF) [10] is a standardized specifica-
tion language for the packaging and distribution of virtual

2www.antlr.org

www.antlr.org

machines. OVF is used to describe general information and
virtual resource usage for an individual virtual machine or a
virtual appliance consisting of multiple VMs, but not for an
entire virtualized infrastructure as in our approach. Virtual
Machine Contracts [15] are a policy specifications based
on OVF that govern the security requirements of a virtual
machine, e.g., to specify firewall rules. Similar to OVF, the
objective of this language is linked to provisioning rather than
expressing high-level security goals on the topological level.
On the hypervisor level, sHype [21] is an implementation
of access and isolation control for virtual machines, which
uses a XML-based access control policy3. Again, the policy
only applies to one entity in the virtualized system, i.e., the
hypervisor hosting virtual machines.

VIII. CONCLUSION AND FUTURE WORK

We studied virtualized systems security goals in the
categories operational correctness, failure resilience, and
isolation. We proposed a formal language to express such
high-level security goals, which, unlike previous work,
covers topological aspects rather than just individual virtual
machines. We chose the Intermediate Format (IF) as formal
foundation of our language because of its support by existing
general-purpose model checkers and theorem provers. We
demonstrated the ability of our language to efficiently express
a diverse set of virtualized systems security goals by giving
concrete specifications for a subset of the studied goals.

Further potential future work is to study dynamic models
of virtualized infrastructures, in order to capture and analyze
configuration changes and state transitions in general.

ACKNOWLEDGMENTS

We would like to thank Stefan Berger, Dimitrios Pen-
darakis, Matthias Schunter and Ray Valdez for the interesting
discussions on cloud security properties as well as for
their valuable comments on approaches to cloud assurance
languages. We are grateful to Sebastian Mödersheim for
the enlightening discussions on the Intermediate Formate IF.
This research has been partially supported by the TClouds
project4 funded by the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement number
ICT-257243.

REFERENCES

[1] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.
Technical report, Cornell University, Ithaca, NY, USA, 1986.

[2] Alessandro Armando, David A. Basin, Yohan Boichut, Yannick
Chevalier, Luca Compagna, Jorge Cuéllar, Paul Hankes Drielsma,
Pierre-Cyrille Héam, Olga Kouchnarenko, Jacopo Mantovani, Sebas-
tian Mödersheim, David von Oheimb, Michaël Rusinowitch, Judson
Santiago, Mathieu Turuani, Luca Viganò, and Laurent Vigneron. The
avispa tool for the automated validation of internet security protocols
and applications. In CAV, pages 281–285, 2005.

[3] Alessandro Armando and Luca Compagna. SATMC: A SAT-Based
Model Checker for Security Protocols. In Logics in Artificial
Intelligence, 2004.

3Xen User Manual, Section 10.3.
4http://www.tclouds-project.eu

[4] AVISPA. The Intermediate Format. Deliverable D2.3, Automated
Validation of Internet Security Protocols and Applications (AVISPA),
2003. http://www.avispa-project.org/delivs/2.3/d2-3.pdf.

[5] Hitesh Ballani and Paul Francis. Conman: a step towards network
manageability. In Proceedings of the 2007 conference on Applications,
technologies, architectures, and protocols for computer communica-
tions, SIGCOMM ’07, pages 205–216, New York, NY, USA, 2007.
ACM.

[6] David Basin, Sebastian Mödersheim, and Luca Viganò. Ofmc: A
symbolic model checker for security protocols. International Journal
of Information Security, 4(3):181–208, June 2005. Published online
December 2004.

[7] Stefan Berger, Ramón Cáceres, Dimitrios Pendarakis, Reiner Sailer,
Enriquillo Valdez, Ronald Perez, Wayne Schildhauer, and Deepa
Srinivasan. Tvdc: managing security in the trusted virtual datacenter.
SIGOPS Oper. Syst. Rev., 42:40–47, January 2008.

[8] Sören Bleikertz, Matthias Schunter, Christian W. Probst, Dimitrios
Pendarakis, and Konrad Eriksson. Security audits of multi-tier virtual
infrastructures in public infrastructure clouds. In Proceedings of the
2010 ACM workshop on Cloud computing security workshop, CCSW
’10, pages 93–102, New York, NY, USA, 2010. ACM.

[9] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris
Sloman. The ponder policy specification language. In Proceedings of
the International Workshop on Policies for Distributed Systems and
Networks, POLICY ’01, pages 18–38, London, UK, 2001. Springer-
Verlag.

[10] DMTF. Open virtualization format specification. Technical report,
DMTF, 2010.

[11] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM
Trans. Softw. Eng. Methodol., 11:256–290, April 2002.

[12] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy language
for a pervasive computing environment. In Proceedings of the 4th
IEEE International Workshop on Policies for Distributed Systems and
Networks, POLICY ’03, pages 63–, Washington, DC, USA, 2003.
IEEE Computer Society.

[13] Sunil D. Krothapalli, Xin Sun, Yu-Wei E. Sung, Suan Aik Yeo,
and Sanjay G. Rao. A toolkit for automating and visualizing vlan
configuration. In SafeConfig ’09: Proceedings of the 2nd ACM
workshop on Assurable and usable security configuration, pages
63–70, New York, NY, USA, 2009. ACM.

[14] L. Lamport. Proving the correctness of multiprocess programs. IEEE
Trans. Softw. Eng., 3:125–143, March 1977.

[15] Jeanna Matthews, Tal Garfinkel, Christofer Hoff, and Jeff Wheeler.
Virtual machine contracts for datacenter and cloud computing envi-
ronments. In Proceedings of the 1st workshop on Automated control
for datacenters and clouds, ACDC ’09, pages 25–30, New York, NY,
USA, 2009. ACM.

[16] Sanjai Narain. Network configuration management via model finding.
In Proceedings of the 19th conference on Large Installation System
Administration Conference - Volume 19, LISA ’05, pages 15–15,
Berkeley, CA, USA, 2005. USENIX Association.

[17] Sanjai Narain, Y.-H. Alice Cheng, Alex Poylisher, and Rajesh Talpade.
Network single point of failure analysis via model finding. In
Proceedings of First Alloy Workshop, 2006.

[18] David Oppenheimer, Archana Ganapathi, and David A. Patterson.
Why do internet services fail, and what can be done about it? In
Proceedings of the 4th conference on USENIX Symposium on Internet
Technologies and Systems - Volume 4, USITS’03, Berkeley, CA, USA,
2003. USENIX Association.

[19] Lawrence C. Paulson. Isabelle: a Generic Theorem Prover. Number
828 in Lecture Notes in Computer Science. Springer – Berlin, 1994.

[20] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, You, Get Off of My Cloud: Exploring Information Leakage in
Third-Party Compute Clouds. In CCS ’09: Proceedings of the 16th
ACM conference on Computer and communications security, pages
199–212, New York, NY, USA, 2009. ACM.

[21] Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Ronald Perez, Leen-
dert Van Doorn, John Linwood Griffin, Stefan Berger, Reiner Sailer,
Enriquillo Valdez, Trent Jaeger, Ronald Perez, Leendert Doorn, John
Linwood, and Griffin Stefan Berger. sHype: Secure Hypervisor
Approach to Trusted Virtualized Systems. Technical Report RC23511,
IBM Research, 2005.

[22] Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang, Albert
Greenberg, Gisli Hjalmtysson, and Jennifer Rexford. On Static
Reachability Analysis of IP Networks, 2004.

http://www.tclouds-project.eu
http://www.avispa-project.org/delivs/2.3/d2-3.pdf

